
Learning Combinatorial Information from Alignments of Landmarks

Luigi Freda∗ Benjamı́n Tovar† Steven M. LaValle†
∗ Dipartimento di Informatica e Sistemistica
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Abstract— This paper characterizes the information space of
a robot moving in the plane with limited sensing. The robot
has a landmark detector, which provides the cyclic order of the
landmarks around the robot, and it also has a touch sensor,
that indicates when the robot is in contact with the environment
boundary. The robot cannot measure any precise distances or
angles, and does not have an odometer or a compass. We
propose to characterize the information space associated with
such robot through the swap cell decomposition. We show how
to construct such decomposition through its dual, called the
swap graph, using two kinds of feedback motion commands
based on the landmarks sensed.

I. INTRODUCTION

This paper introduces a robot that has minimal sensing.
The robot has two sensors, a landmark detector, which
reports the cyclic order of landmarks, and a touch sensor, that
indicates when the robot is in contact with the environment
boundary. What information such robot can learn from its
environment? For example, is such information sufficient to
perform navigation? To answer these questions, we propose
to study the information space associated with this robot
model. Information spaces consider the whole histories of
actions and observations [9], therefore representing the com-
plete knowledge of the robotic task.

Landmarks generally represent distinctive environment
features (e.g., corners) or a priori known objects (e.g.,
radio beacon) which can be detected by robot’s sensors. A
considerable amount of literature has focused on the problem
of localization using landmarks. Many researchers proposed
different triangulation approaches to localize a robot which
can measure only landmark bearings [1], [3], [11]. Some
researchers addressed the problem of landmark placement,
i.e, placing a set of landmarks in a given environment so
that a robot can localize itself from any point [3], [14]. In
these context, landmarks can be assumed to be distinguish-
able [13] or identical [12]. Some authors suggest to use both
natural and artificial landmarks to localize a robot during a
navigation [6]. In SLAM algorithms, the robot automatically
determines landmarks while building a map.

Landmarks can be also considered as distinctive visual
events [10] which can be used to identify distinct places.
Using suitable control strategies, distinct places can be linked
to build a topological network description of the environ-
ment [8]. Indeed, topological maps play a central role in
a hierarchical description (cognitive map) of a large-scale
environment. In [4] an algorithm is proposed for building
a graph-like map of an unknown environment. In [2] a
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Fig. 1. The landmark order detector gives the cyclic order of the landmarks
around the robot. For example, a valid reading for the configuration on (a)
is shown in (b). Note that only the cyclic order is preserved, and that the
sensed angular position of each landmark may be quite different from the
real one. Thus, the robot only knows reliably, up to a cyclic permutation,
that the sequence of landmarks detected is [7,2,8,5,3,6,1,4].

topological approach to SLAM is presented: the topology
of the explored free space is used to localize the robot.

In this paper we extend the robot model presented in [16]
and we show how to build a topological representation of the
environment. In [16] the robot was confined to the convex
hull of the set of landmarks, because it could only move
bearing towards landmarks. In the present work the robot is
also provided with a touch sensor, and in certain situations,
can move away from a landmark. This allows the robot to
leave the convex hull of the set of landmarks. In comparison,
in [16], the information states are compactly represented with
the order type [5] of the configuration of landmarks, while
in this paper it takes the form of a decomposition of the
plane through an aspect graph. The present paper can be
considered as an extension to the work proposed in [10].
In that work, Levitt and Lawton subdivide the plane into
local viewframes, in which a robot can localize itself with a
local landmarks reference frame, using angular information
without any range information. A viewframe is a face of the
line arrangement spawned by the lines incident to each pair
of landmarks. Levitt and Lawton use some information of
the underlying landmark tracking process (in addition to the
cyclic order of landmarks) to detected when the robot crosses
a line and enters a new viewframe. In the present paper,
we abstract the underlying landmark tracking process, and
work uniquely with the information provided with the cyclic
order of landmarks. This does not allow the construction
of the full line arrangement. Instead, we have to work with
the arrangements of half-lines that start at each landmark
position.

These arrangements of half-lines spawn a cell decompo-
sition in which distinctive places are identified as location
in which the landmark sensor returns a constant circular
order. An algorithm is proposed to build a topological



representation of this decomposition which can be used to
fulfil subsequent navigation tasks.

The paper is organized as follows. In Sect. II we describe
the robot model and the working assumptions. In Sect. III the
order type of the configuration of landmarks is introduced
and used to encode the information states of the robot. In
Sect. IV-V the swap cell decomposition is presented and its
properties are analyzed. Sections VI and VII-B describe how
to perform navigation and exploration task with the given
robot model.

II. MODEL

Let P be a set of n points in R2. Let s : R2 → {0, . . . , n}
be a mapping such that every point in P is assigned a
different integer in {1, . . . , n}, and s(p) = 0 implies p /∈ P .
Such mapping s is referred to as a landmark identification
function and P is referred to as the set of points selected by
s. Given a point p ∈ P , the pair l = (s(p), p) is referred to
as a landmark, and s(p) is called a landmark label. Let L be
the set of all the landmarks (s(p), p), p ∈ P , and let hull(L)
be the convex hull spawned by the landmarks positions. The
robot is modeled as a moving point in R2. Its configuration
q ∈ SE(2) is described by its position in R2 and heading in
S1. For a set R ⊂ R2, an environment E is defined as a pair
(R, s). In this paper we assume that the boundary ∂R of R,
is a simple piece-wise analytic closed curve, and that R is
a convex set. The space of environments E is the set of all
such pairs. The state is defined as the pair x = (q, E), and
the state space X is the set of all such pairs (SE(2)× E).

The robot has two sensors, the landmark order detector,
and a touch sensor. The landmark order detector provides
the counterclockwise cyclic ordering of the landmark labels
around the position of the robot (see Figure 1). We write
lod(x) to refer to the reading of the landmark order detector
at state x ∈ X . No precise metric information is available,
and given that the robot does not have a compass, readings
from lod(x) are different up to a cyclic permutation of the
landmark labels. The landmark order detector is assumed
to have unbounded range. The touch sensor indicates if the
robot is in contact with the environment boundary. We write
touch(x) to refer to the reading of the touch sensor on state x.

A. Motion primitives

Given a label s(p) ∈ lod(x), a chase(s(p)) motion prim-
itive commands the robot to move towards point p. When
the robot arrives at p, the cyclic order of s(p) in lod(x) is
undefined. This serves as model for the termination condition
of chase(s(p)): when the landmark is not detected anymore,
then the robot is on top of the landmark. Note that this is
only a simplification for further developments, and similar
termination conditions can be stated without the robot being
on top of the landmark. Also note that during the execution
of chase(s(p)), the coordinates of the landmark and robot
position remain unknown.

If |L| > 2, for two labels s(p), s(r) ∈ lod(x), the motion
command repel(s(p), s(r)) first moves the robot to p with
a chase motion primitive, and then moves the robot away
from p and r, following the line defined by p and r. The
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Fig. 2. Cyclic permutations of three landmarks. Purely by sensing,
the robot cannot determine whether it is inside the convex hull defined
by the three landmarks. Nevertheless, the orientation of the triangle (the
counterclockwise cyclic order of the landmarks as sensed from inside their
convex hull) can be determined with an information state.

repel motion primitive terminates when touch(x) reports
that the robot is at the environment boundary. The cyclic
ordering of lod(x) provides enough feedback information to
execute repel(s(p), s(r)) without any exact measurements.
With this feedback, the robot may not be able to follow
exactly this line, but as we present later, this is enough for our
purposes. Denote with pr the oriented half-line that would
be ideally followed by the robot with repel(s(p), s(r)). With
a general position assumption in which no three landmarks
are collinear, the following observations can be made:

1) When the robot is close enough to pr, the landmark
label s(p) and s(r) are consecutive in lod(x)

2) The labels s(p) and s(r) swap their orderings in lod(x)
every time the robot crosses pr

3) If the robot is close enough to the right (resp. left)
of pr then lod(x) = [...s(p), s(r), ...] (resp. lod(x) =
[...s(r), s(p), ...]). Therefore, in a close vicinity of pr, the
robot can distinguish on which side of pr is moving.

Assuming the existence of control errors, the robot can
approximately follow pr through a continuous zig-zag: start-
ing close to pr and heading away from p, the robot turns left
or right when s(p) appears before or after s(r) in lod(x),
respectively.

Although we do not discuss here the real implementation
of the landmark order detector, it can be constructed, for ex-
ample, with an omnidirectional camera with standard feature
tracking software (i.e., filter-based tracking [15]). Certainly,
more information besides the landmarks cyclic ordering can
be obtained from a particular implementation [10], but such
information is discarded. This simplifies the model such that
an information space can be completely characterized. The
extra information may be used, for example, to increase
robustness.

III. ENCODING THE INFORMATION STATES

Given the model described in the last section, consider the
robot as it moves in the environment. The only information
the robot receives is the changes in the cyclic permutations.
For example, for three landmarks, only two sensor readings
are possible. Purely by sensing, the robot cannot even know
if it is inside the convex hull defined by the three landmarks
(see Figure 2). Nevertheless, consider the robot travelling
from the landmark labeled with 1 to the landmark labeled
with 2. Since the reading from the landmark order detector
follows a counterclockwise order, the robot can determine
whether the landmark labeled with 3 is to the left or right of
the directed segment that connects landmark 1 to landmark
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Fig. 3. The swap lines lm and ml associated to the couple of landmarks
l and m. If x is arbitrarily close to lm or ml, then the two landmark labels
l and m become adjacent in lod(x). When the robot crosses lm or ml, l
and m swap.

2. Thus, the robot can combine sensing with action histories
to recover some structure of the configuration of landmarks.

A. Order Types and Landmarks

In [16] we generalized the previous idea, encoding the
information states with the order type of the configuration
of landmarks. The order type was sufficient to encode all
the knowledge the landmark order detector can provide for
a robot that only has the chase motion primitive (no repel),
and that moves inside hull(L). For a configuration of labeled
points, an order relation ≤ can be defined through the relative
orientation of three points, which is computed as follows [5].
The ordered triplet of points p1, p2, p3, with pi = (xi, yi), is
said to have positive orientation if the determinant∣∣∣∣∣∣

1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣
is strictly bigger than 0, and this is denoted by p1p2p

+
3 .

The order type of a labeled configuration of points P is
determined by the relative orientation of each triplet of points
in P . The order type of the configuration of points can be
encoded by a function defined as follows:

Λ(i, j) = {k | pipjp
+
k , for pi, pj , pk ∈ P}.

The function Λ takes the indices i, j of two points pi, pj ∈
P , and returns the indices corresponding to the points in
P \ {pi, pj} positively oriented with respect to pi and pj (in
that order). This order type definition is extended naturally
to our landmark framework, using the landmark labels as
the indices for Λ. Of course, the robot cannot compute the
determinants, because it lacks any coordinates. Nevertheless,
it is possible to compute Λ for any pair of landmark labels,
as it is shown in [16]. In this way, a partial knowledge of Λ
encodes an information state.

If the robot would move outside hull(L), there would be
some information that cannot be described using uniquely
order types, as it is shown later in this paper. To deal with this
cases, the robot model is extended with an additional motion
command (repel), and with an additional sensor (touch). With
these additions, the information space can be represented as
a decomposition of the plane, as it shown in the next section.

IV. SWAP CELL DECOMPOSITION

Given two different landmarks l, m ∈ L, consider the half-
line lm collinear with l and m, that starts at l, and is not
incident to m. The half-line lm is referred to as a swap
line. The swap line ml is defined analogously. Each pair of
landmarks defines a pair of swap lines (see Figure 3). When

the robot is arbitrarily close to lm or ml, l and m appear
consecutive in lod(x). If the robot crosses any of these swap
lines, then l and m swap their order in the landmark order
detector.

If the robot is on either lm or ml, l and m are collinear
with the robot, and a priori, the robot cannot tell which
of them is closer. However, the robot can easily determine
which landmark is closer during the execution of a repel
motion command as follows. Assume that l′ and m′ are
the landmarks that become collinear with the position of
the robot while repel(l,m) is executed, and that l′ is the
landmark closer to the robot. Using Λ(m, l), the robot can
determine if both l′ and m′ lie to the left or to the right
of the lm half-line [16]. If after the alignment lod(x) =
[l, m, . . . , l′,m′ . . .] or lod(x) = [m, l, . . . , l′,m′ . . .], then l′

and m′ are to the right of lm. This is determined by the
counterclockwise order given by lod(x). Note that in both
cases, l′ appears closer to the pair l, m. The case for the
left side is analogous, but with m′ closer to the pair l and
m. For simplicity, we will further assume that lod(x) also
reports which landmark is closer. Note that this assumption
is not really necessary given that such information can be
retrieved combining sensing and movements.

Consider the decomposition induced on R by all the swap
lines. Each open 2-dimensional cell of these decomposition is
called a swap cell. This decomposition called the swap cell
decomposition can be considered as the base of an aspect
graph [7], in which a cyclic permutation is an aspect of
the configuration of landmarks. Given that the swap lines
are half-lines, swap cells are in general not convex. The
reading of lod(x) inside a swap cell is constant (up to a cyclic
permutation). Moreover, adjacent swap cells differ only on
the ordering of two landmark labels. These correspond to the
landmarks generating the swap line separating the two swap
cells.

Let K be the set of all of the swap cells. Abusing
notation, for cells K ′ ⊂ K, we let lod(K ′) be the set
of all possible readings from cells in K ′. Also, for a cell
C ∈ K, we let lod(C) be the unique reading obtained when
the robot is inside C. A reading in lod(K ′) has exactly
|L| landmark labels, since the robot is not on top of any
landmark. In the general case |K| ≥ |lod(K)|. That is, one
reading may correspond to more than one cell. The swap cell
decomposition has other interesting properties. First, we will
discuss some simple examples, and then we will discuss in
more detail these properties.

A. Examples

In the cases when |L| < 3, there is a single, unbounded
swap cell. With |L| = 3 (see Figure 2), there are four swap
cells (|K| = 4), but only two sensor readings are possible
(|lod(K) = 2|).

In Figures 4 and 5, two examples with four landmarks are
shown. Note that the case shown on the left of Fig. 4 is not
“stable”, given that two swap lines that are not generated by
the same landmarks pair have to be parallel. Therefore the
case shown in Fig. 5 will appear exclusively under a general
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Fig. 4. Left: an example with four landmarks. The sensor readings
associated to the cells are shown in squared brackets. Note that adjacent
swap cells differ just on a swap between adjacent labels. This arrangement of
landmarks is not stable: two swap lines which are not generated by the same
landmarks pair have to be parallel. Right: the swap graph corresponding to
the landmark deployment on the right.
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Fig. 5. In this second example with four landmarks, we have a different
swap cell decomposition outside the convex hull. A robot provided only
with lod(x) and a chasing motion primitive can not distinguish this case
from the previous one.
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Fig. 6. Left: an example of a swap cell with 2n edges: all the n = 6
landmarks are the vertices of the swap cell C. Right: a swap cell C with
a landmark h on its boundary. Given a point y ∈ cl(C), the line segment
hy can not intersect the two edges of another reflex vertex (landmark) k on
∂C, otherwise the swap line hk would subdivide C in two distinct swap
cells.
position assumption. This is, incidentally, what motivate us
to add the repel motion command to the work on [16]. Note
that inside the convex hull of the swap cells, we did not have
to worry about the differences between Figures 4 and 5.

V. SWAP DECOMPOSITION PROPERTIES

Theorem 1: In the swap cell decomposition for set of land-
marks L, with n = |L|:

1) A swap cell can have at most 2n swap lines in its
boundary.

2) Any swap cell C ∈ K is a star-shaped polygonal
region1.
Proof: Both statements follow directly from the fact that the
swap cell decomposition is a complex defined over n(n−1)
half-lines.

1A subset S ⊂ R2 is star-shaped if there exists a point p ∈ S such
for any point r ∈ S, the line segment connecting p and r is completely
contained in S.

1. The swap lines starting at a landmark l ∈ L partition
the plane in n − 1 regions. Thus, for each particular cell,
a landmark may provide at most two swap lines. Hence,
the cell has at most 2n edges when all the landmarks are
considered. This bound is tight, as shown on the left of
Figure 6).

2. The edges of any swap cell are the result of half-line
intersections, and thus the boundary ∂C of C is polygonal.
If there is not a landmark in ∂C, then all the vertices of ∂C
are the result of swap line intersections. Therefore cl(C)
is a polygonal convex and star-shaped. If ∂C has only one
landmark as a vertex, then ∂C is a polygonal boundary with
only one reflex vertex2, and thus C is star-shaped. For the
remaining cases, let h be a landmark defining a vertex in
∂C, and assume there is a point y ∈ C such that the line
segment hy * C (see Figure 6 right). The line segment hy
has to cross two edges of ∂C incident to another landmark
in ∂C, say k. This is not possible, because the swap line hk
divides C, contradicting that y ∈ C.
The following lemma describes how landmark labels can
swap when the robot travels in a line segment:
Lemma 1: If p and r are two points belonging to different
swap cells, then any pair of landmark labels may swap
ordering at most once when the robot moves along the line
segment joining p and r.
Proof: Only one swap line of each pair of landmarks may
intersect the line segment pr. This is because p and r belong
to different swap cells, therefore pr cannot be collinear with
any swap line. Thus, each label swapping involves a different
pair of landmarks.
The proof of the following lemma was presented in [16].
Lemma 2: Let L be a set of landmarks, let Z be a subse-
quence of lod(x) containing only the labels corresponding
to the landmarks in ∂hull(L) (elements of Z may not
necessarily appear consecutively in lod). Then Z is the same
sequence for any position of the robot inside hull(L).
The two following theorems give more insights about the
information encoded in the swap cell decomposition (for the
proofs refer to [16]).
Theorem 2: Two swap cells bounded by the same swap line
generate different sensor readings in the landmark order
detector.
Theorem 3: If C and C ′ are two different swap cells that
intersect hull(L), then lod(C) 6= lod(C ′).
The following corollary to Theorem 3, extends the unique-
ness of sensor readings inside the hull(L).
Corollary 1: If C is a cell that intersects hull(L), then there
is no swap cell C ′ such that lod(C ′) = lod(C).
Proof: If C ′ does not intersect hull(L), then by Lemma 2
lod(C) 6= lod(C ′). Otherwise, lod(C) 6= lod(C ′) by Theo-
rem 3.

Unfortunately, the previous result cannot be generalized to
all the cells in the decomposition:

2A vertex is called reflex if its incident edges form an angle strictly greater
than π.
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Fig. 7. A construction for obtaining a deployment of landmarks such that
two points outside the convex hull of the landmarks are associated to the
same cyclic reading [1, 2, 3, 4, 5]. First, two points x1 and x2 are chosen.
Second, the cyclic permutation [1, 2, 3, 4, 5] is represented on two segments
in the form of two equivalent permutations. Third, each landmark position
pi is found as the intersection of two correspondent rays emanating from x1

and x2 and passing trough the points labeled i. Suitable label arrangements
on the two segments allow to retrieve a deployment for which x1 and x2

belong to different swap cells.

Theorem 4: If C and C ′ are two different swap cells that
do not intersect hull(L), then lod(C) and lod(C ′) may not
necessarily be different.
Proof: Refer to the construction on Figure 7.

For landmarks l and m, assume that the robot is moving
away from l during the execution of repel(l,m). If the robot
is not at the intersection of lm with another swap line,
then there is exactly one swap cell to right Cr, and one
swap cell to left Cl of the robot, considering the frame of
reference that lm provides. Then the readings of Cr and
Cl differ only in the ordering of l and m. Particularly,
lod(Cl) = [. . . , m, l, . . . ] and lod(Cr) = [. . . , l,m, . . . ].
This information will be used to build a topological rep-
resentation of the unknown environment.

VI. GOAL-BASED NAVIGATION

Given a desired sensor reading g, the robot can be com-
manded to reach a swap cell C, for which lod(C) = g. No
a priori knowledge of the landmarks deployment, or of the
swap cell decomposition is assumed. In [16] it was shown
how to perform this for sensor readings inside hull(L). Here
we extend these ideas for sensor readings outside the convex
hull, also using the repel motion command to have more
efficient movements. First, we prove a relation between cell
C and its sensor reading g.
Theorem 5: Given a cyclic permutation of landmark labels
g, if a swap cell C exists such that lod(C) = g, then it
is bounded by a swap line lm, for which l and m appear
consecutively in g.
Proof: Consider the change in the sensor reading when the
robot enters cell C, crossing a swap line lm. This means
that l and m appear consecutively just before entering C,
and after swapping, remaining consecutive inside of C.
Theorem 5 provides the base for a simple navigation strategy.
Assume that g = [l1, l2, ..., ln]. Then the robot executes
sequentially repel(li, li+1) and repel(li+1, li), for all the
consecutive pairs of landmarks in g. As the robot executes
the repel motions, information can be gathered to determine
if g can be achieved, before all the repel commands are
executed [16]. As the robot moves on a swap line, the
readings of the cells to the left or to the right of the robot
are determined as explained before.

gi1 i2 gi2 i,n-1 vi2 

pi gi,n-1 

i1
vi1

vi,n-1
i2 

i,n-1

li

Fig. 8. Left: the landmark li = (i, pi) and the n− 1 swap lines starting
from pi. The sensor readings gi1, gi2, ..., gi,n−1 are respectively associated
to the n−1 swap cells Ci1, Ci2, ..., Ci,n−1 incident to pi. Right: the swap
graph representation of the group of cells Ci1, Ci2, ..., Ci,n−1. The node
vij represents the swap cell Cij .

VII. SWAP GRAPH AND TOPOLOGICAL MAP BUILDING

The swap graph G(V,E) is a data-structure representing
the dual of the swap cell decomposition. A vertex v ∈ V
represents a swap cell with its associated sensor reading. An
edge e ∈ E, incident to vertices v, u ∈ V , is labeled with
lm if the associated swap cells are neighbours through the
swap line lm (that is, the readings encoded in v and u differ
only in the ordering of l and m).

The swap graph offers an alternative to order types for
representing the information space of our robot model. Its
construction is more complex than that of the order type, but
it can deal with information outside hull(L). Also, it handles
some degeneracies, as the one presented in Figure 4.

A. Landmark Representation in the Swap Graph

For landmark li, let Ci2, Ci3, ..., Ci,n−1 be the n−1 swap
cells incident to li. Let lod(Cij) be the corresponding sensor
reading (see left of Figure 8). Without loss of generality,
assume that gi = [1, 2, . . . , i−1, i+1, . . . , n] is the (n−1)-
length cyclic permutation returned by lod(x) when the robot
is at li.

The n-length sensor readings associated to the n−1 swap
cells surrounding li can be easily obtained displacing the
landmark label i between each couple of adjacent landmark
labels in gi. For example, gi1 = [i, 1, 2, ..., n], gi2 =
[1, i, 2, ..., n], gi,n−1 = [1, 2, ..., i, n]. In this case the swap
line ij bounds the swap cells Cij and Ci,j+1. Using the
swap cells properties, it is also easy to deduce which swap
line separates a pair of these cells in the general case.

The swap graph representation of the group of cells
Ci1, Ci2, ..., Ci,n−1 is depicted on the right of Figure 8.
A cycle of edges on the swap graph represents the star
of swap lines expanding from li. For sake of clarity, the
corresponding enclosed region can be marked with a blue
(dark tone) circle labeled li.

The swap graph corresponding to the landmark deploy-
ment on the left of Figure 4 is shown on the right of Figure 4.

B. Building the Swap Graph

The swap graph can be built by driving the robot along
all the n(n − 1) swap lines associated to the n landmarks.
Moving along each swap line, the robot reconstructs the
sensor readings of the coasted swap cells and incrementally
extend the graph.

The swap graph construction algorithm can be described
as follows:
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Fig. 9. Left: the robot has just crossed the swap line r while performing
repel(i, j). The robot can reconstruct the sensor readings associated to the
new swap cells on its left and right. Right: correspondingly, two vertices
vR and vL are added to the swap graph; uR and uL are the vertices
corresponding to left and right swap cells before r is crossed.

1) For each landmark li = (i, pi) ∈ L, chase li, and build
the “ring” of vertices around li, as described in Sect VII-A.
Some of this new vertices may actually represent a swap cell
already represented in G, but there is not enough information
to detect this yet.

2) For each swap line ij starting at li (with corresponding
pair lj = (j, pj)), repel(i, j) until the robot reaches the
boundary of the environment.

3) While repel(i, j), every time lod(x) changes, G may
need to be updated. Call uR and uL the vertices correspond-
ing to cells to left and right of ij when the robot is at li,
and call r the swap line crossed when lod(x) changed (see
Fig. 9).

• Vertex vR, corresponding to the cell to the right of ij
is added to G if there is not another vertex v ∈ G
associated with the same sensor reading. If such v
exists, vR is still added if the swap cells corresponding
to v and vR are not bounded by the same swap line.
Otherwise let vR = v. An edge labeled with r is added
between vR and uR. A similar process is repeated for
vertex vL, corresponding to the cell to the left of ij. An
edge labeled with ij is also added between vR and vL.

• If there is a vertex v ∈ G such that v is associated
with the sensor reading of uR, and the swap cell
corresponding to v is bounded by r, then v and uR

represent the same swap cell, and are merged into a
single vertex. The same is repeated for uL.

• Update uR to vR, and uL to vL, and continue repel(i, j).
Theorem 6: The swap graph construction algorithm cor-
rectly constructs the swap graph G inside R.
Proof: Each swap line in the decomposition is tracked. This
guarantees that for each swap cell, at least one vertex is cre-
ated that represents it. Vertices in G are removed (merged) if
and only if the cells they represented are found to be bounded
by the same swap line (by Theorem 2). By construction,
edges are added to G only when the corresponding vertices
represent neighboring swap cells.

In the previous section we described a goal-based navi-
gation algorithm without assuming an a priori knowledge of
the environment. Now, given a swap graph representation of
the environment, we can easily drive the robot from one cell
to another. Each swap cell, is unequivocally identified by a
vertex of G and its incident edges. Note that two distinct
vertices can store the same landmark cyclic permutation but
cannot have the same labels on their incident edges (by
Theorem 2). Given a vertex v ∈ G, the corresponding swap
cell can be reached with a repel motion along one of the

swap lines labeling an edge incident in v.
VIII. CONCLUSIONS

In this paper we analyzed the information space of a robot
which has a landmark order detector and a touch sensor.
We presented an algorithm for robot navigation using these
capabilities, and introduced the swap graph data structure,
to collect all the information available to the robot. The
swap graph can be used as a topological description of the
environment which allows the execution of goal-based navi-
gation. We proved formally that the robot can construct the
swap graph using uniquely the sensing capabilities provided.
Our results propose some minimal sensing requirements for
navigation and model representation. In other words, if the
cyclic order of landmarks and the touch sensor are provided
as described in this paper, then a robot can recover some of
the environment structure, build a model of it, and navigate.
Certainly, the robot movements are not particulary efficient
but the implementation on a real robot generally provides
more information than the cyclic order of landmarks. This
of course can be used to both increase the robustness of the
strategies and the efficiency of the movements. As future
work, we would like to relax some of the sensing require-
ments (reliable landmark tracking and unbounded range), by
adding some other sensing or movement capabilities.
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