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Abstract—This paper examines the problem of determining the
distribution of a number of indistinguishable moving bodies lo-
cated in regions separated by sensor beams that can detect whether
a body moves across them. We characterize the conditions under
which an exact distribution of bodies can be determined, and com-
pute bounds on the expected number of sensor observations re-
quired to determine this exact distribution for a certain movement
model of the bodies.

Note to Practitioners—Consider a building in which the rooms
are separated by sensors that detect crossings, such as turnstiles
(or laser tripwires, pressure-sensitive floors, etc.). If the number of
occupants in each room is known initially, it is easy to use the data
from the turnstiles to keep the population of each room up-to-date.
However, if the number of occupants in each room is not known
initially, the data from the turnstiles can be used to determine the
population in each room. This paper approximates how long it will
take to accumulate the data needed to determine these populations.

Index Terms—Filtering, robots, tracking.

I. INTRODUCTION

C ONSIDER determining, in a large office building with
many rooms, how its anonymous occupants are scattered

in the rooms. Such information can be of vital importance in
scenarios such as coordinated building evacuation in an emer-
gency or characterizing building usage for energy optimization.
Let the distribution of the occupants be the precise number of
occupants per room. The task is relatively easy if an initial distri-
bution of the occupants is known: We may simply place sensor
beams at doorways of rooms to figure out the change in pop-
ulation for each room as the occupants move around. Adding
or subtracting the change from the initial count then yields the
answer. But what if the a priori distribution of the occupants
is unavailable? Could the task still be solved without additional
sensors?
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Fig. 1. [top] A simple environment with five regions separated by sensor
beams, in which a body is moving from region to region . [bottom] The
corresponding graph representation of the environment, induced by the sensor
placement. The dotted edge is being traversed by the body moving from
to .

In this paper, we show that, somewhat surprisingly, the afore-
mentioned simplistic sensor setup is still powerful enough for
determining the occupant distribution as required, given only
an initial total population and enough time. More precisely, we
characterize the capabilities and limitations of using beams to
keep track of bodiesmoving around in a closed and bounded en-
vironment partitioned into regions by these beams. A beam de-
tector is perhaps one of the simplest sensors: As a fixed sensor,
it detects that a moving body passes through it but it cannot de-
termine any other property of the body. With two of these it is
also possible to tell the movement direction of the passing body.
Fixing such pairs of beams between regions of interest, we have
at any moment the net number of bodies that have moved in/out
of any region. Fig. 1 (top) shows one of the simplest environ-
ments under this model. Note that the regions and beams can
be effectively represented as vertices and edges of a (directed)
graph [Fig. 1 (bottom)]. The bodies occupy the vertices of the
graph; each sensor observation corresponds to a crossing of a
body over an (directed) edge of the graph.
The contributions of this paper are twofold. First, we deter-

mine a necessary and sufficient condition on the initial distri-
bution of bodies and the sensor history that allows the determi-
nation of an exact count of the bodies in each region. Second,
we determine bounds on the expected number of sensor obser-
vations required to acquire a count of the bodies in each region
for a specific movement model of the bodies. We show that for
some starting distributions, the expected number of sensor ob-
servations required to determine the distribution is exponential in
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the number of bodies, while for other starting distributions (even
in the samegraph), the expectednumber of observations required
to determine a distribution is polynomial in the number of bodies.
Various simple sensor models have been investigated in the

task of target tracking and counting. Binary proximity sensors
have been employed to estimate positions and velocities of a
moving body using particle filters [1] and moving averages [2].
The performance limit of a binary proximity sensor network in
tracking a single target was discussed and approached in [3],
followed by an extension to the tracking of multiple targets [4].
The task of counting multiple targets using simple sensors was
also studied in [5], in which the problem of accurately counting
the number of targets with overlapping footprints using pres-
sure sensor arrays was solved with a novel approach of inte-
grating over Euler characteristics. In the works mentioned so
far, the sensor network’s aggregate sensing range must cover
the targets of interest at all times. When only a subset of an en-
vironment is guarded, word problems in groups naturally arise
[6], [7]. For the setup in which targets moving inside a 2D re-
gion are monitored with sensors, algorithms exist that estimate
the possible distribution of these targets [8], [9]. In particular,
[8] focused on sensor beams and studied the issues of possible
target locations, target path reconstruction up to homotopy, and
path winding numbers. In [8], the surfacing of more interesting
behaviors also induces an increase in computational complexity
as well as convergence time, which is similar to what we ob-
serve in this paper. Controlling of sensorless wild bodies using
various forms of gates was explored in [10], and some of the
physically implemented gates used laser sensor beams to detect
crossings between regions. Related to the control of sensorless
wild bodies is the sensorless manipulation of polygonal parts
was studied in [11] and [12].
If the limitation on using simple sensor models is lifted, re-

search literature on target counting and tracking expands. Given
the amount of papers and their diversified nature on this topic,
we only mention a few of them. In [13] a simple virtual sensor,
capable only of reporting visible features of the polygonal en-
vironment and the presence of indistinguishable targets, is able
to count static targets using a minimal amount of data storage,
though it is unclear how the simple virtual sensor could be im-
plemented by simple physical sensors. In the domain of wire-
less sensor networks, the study of target counting and tracking
is frequently coupled with communication efficiency and other
concerns [14]. In [15], Simultaneous Localization and Map-
ping (SLAM) and Detection and Tracking of Moving Objects
(DTMO) are combined to attack both problems at the same time.
Real-time people counting with a network of image sensors is
studied in [16].
The rest of this paper is organized as follows. Section II

contains definitions that will be used throughout this paper.
Section III describes the conditions under which the distribution
of bodies can be determined. Section IV describes a movement
model for the bodies called the exponential random movement
model. This section also describes a physical system that pro-
duces behavior closely approximated by the exponential random
movement model. Section V contains an upper bound on the
expected number of sensor observations required to count the
bodies in each region when the behavior of the bodies matches

the exponential random movement model. Section VI contains
a method of using the upper bound to estimate the number of
bodies in the environment if that number is not known in ad-
vance. Section VII contains a tight lower bound on the expected
number of sensor observations required to count the number of
bodies in each region when the behavior of the bodies matches
the exponential randommovement model. Section VIII contains
results for a very simple 2-cycle environment. Section IX dis-
cusses directions of future research. For readability purposes,
some proofs are located in an Appendix at the end of this paper.

II. DEFINITIONS

The vertices of an -vertex directed graph containing no
sinks 1 are populated by a set of moving bodies, in which

. This graph represents the regions and sensor beams
of a physical environment (see Fig. 1). The bodies are capable
of traveling through the edges into other vertices. When a body
moves, a sensor observation is generated that identifies the
edge that the body traversed. We assume that only one body
moves through a sensor beam at a time, and we assume that the
sensor beams operate without errors. Additionally, the bodies
are indistinguishable to the sensor beams. The system is in the
th stage after the th sensor observation has been generated.
Let be the vertex set of graph . A distribution is an
assignment of the moving bodies to vertices of .
We assume that no information about the initial distribution

of moving bodies is known. The history information state
is the list containing the first sensor

observations. The bounds information state con-
sists of a total number of bodies and two -length vectors

(the upper bounds) and (the
lower bounds), where is the greatest number of bodies that
could be in vertex in stage , while remaining consistent
with the previous sensor observations, and is the least
number of bodies that could be in vertex at stage , while
remaining consistent with the previous sensor observations.
The interval length length is the value of
at stage . A bounds information state with an interval length
of 0 is called a counting information state. Once a counting
information state has been reached, it is trivially easy to keep
track of the number of bodies in each region. Since the bodies
are indistinguishable to the sensors, a counting information
state is an exact description of the system state. For some
information state , let be the hypothesis set of , defined
as the set of distributions of bodies over the vertices that are
consistent with the information state .
When a distribution and lower bound set are presented

in the form , then the lower bound set is implied to be
consistent with the distribution (in other words, there is no
vertex in which is greater than the actual number of bodies
in ). A distribution and lower bound set is near-com-
plete for vertex if the lower bound is equal to the number
of bodies in for all , and the number of bodies in is
equal to . Note that is near-complete if and only if

.

1Graphs with sinks are excluded because bodies located in sinks are unable
to move to different vertices, which renders them undetectable.
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III. COUNTING MOVING BODIES

In this section, the goal is to characterize what types of initial
distribution and information history combinations allow the de-
termination of a counting information state. As a first step, we
show that, as long as a count of the total number of bodies in the
graph is known in advance, the lower bounds of the bounds in-
formation state are sufficient to represent all that is known about
the distribution of the bodies.
Theorem 1: For all and all , the interval

length length . (Proof provided in the
Appendix.)
Theorem 1 implies that keeping track of an upper bound for

each individual vertex is redundant, as all upper bounds can be
reconstructed using the lower bounds and the total number of
bodies. This means that once the lower bound of a vertex and
the number of bodies in are the same, we have in some sense
learned all that we can from . An informative observation is a
sensor observation that decreases this interval length. Theorem
1 implies that exactly informative observations are required
to obtain a counting information state. A corollary to Theorem
1 provides a necessary and sufficient condition for determining
when enough informative observations have been acquired.
Corollary 2: The information state is a counting

information state if and only if for each vertex there
exists a stage , where , and contains no bodies at
stage . (Proof provided in the Appendix.)

IV. EXPONENTIAL RANDOM MOVEMENT MODEL

In Sections IV–IX, we will determine bounds on the expected
number of steps required to converge to a counting information
state. In order for these bounds to be well-defined, we require
a model for the movement of the bodies. We have chosen to
focus on a model in which each individual body has an equal
probability of being the next body to move. For the purposes of
our results, it is unimportant to which vertex the body moves
if it has more than one option. We name this movement model
the exponential random movement model because one situation
in which this behavior occurs is when the amount of time that
each body spends in between movements is described by an
exponential random variable.
This model may be appropriate when the underlying event

causing the movements is a Poisson process (perhaps the body
is equipped with a Geiger counter and moves to a different room
when it detects radiation). A system that is well approximated
by this movement model is balls bouncing via specular bounces
in polygonal regions separated by small doorways, similar to
mathematical billiards. See Fig. 2 for a representative environ-
ment and the distribution of the length of time a body remains
in a single room between transitions.
Let be the two-vertex directed cycle. Given a graph

and a distribution that is near-complete for a vertex
, let be a distribution and lower bound set on

that is near-complete for , where contains the same
number of bodies that places in .
Let be a random variable denoting the number of

sensor observations required to converge to a counting informa-

Fig. 2. [top] An environment with three symmetric regions and a population
of moving bodies performing spectral bounces. [bottom] The distribution of
the lengths of time spent in a single region between transitions compared to an
exponential random variable with the same mean. The values along the axis
count simulation steps.

tion state in a directed graph starting from an initial body dis-
tribution with the bodies using the exponential random move-
ment model. We will refer to as the expected ex-
ponential convergence time, or the EE-convergence time. The
word “exponential” in the term refers to the behavior of the
random variables governing the motion of the bodies. The re-
mainder of this paper will focus primarily on placing bounds on
the EE-convergence time.

V. AN UPPER BOUND ON THE EE-CONVERGENCE TIME

Let graph contain bodies. For a distribution of bodies
and set of lower bounds , let be a random
variable denoting the number of stages until an informative ob-
servation occurs. Let be themaximum of
over all choices of .
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Lemma 3: If , then is near-
complete.

Proof: Suppose that the lemma is false and let be any
set of lower bounds consistent with such that

and is maximal. Let be a set of lower
bounds consistent with such that and for all

, . Note that, because , there
is exactly one vertex , where ’s lower bound in is not equal
to its number of bodies (the two values differ by exactly one
body). Similarly, either there exists a vertex such that
and ’s lower bound in is also not equal to its number of
bodies, or ’s lower bound in differs from its number of bodies
by two or more.
Let be the set of finite sequences of sensor observations

that, starting from and , contain exactly one informative
observation, located at the end of the sequence. For ,
let be the probability that sequence occurs. Note that

is only dependent on and , not on . Also note that
. Since the interval length

for is one, each sequence in must at some point move all
bodies out of .
Since also has a lower bound in that differs from its

number of bodies, any sequence contains a min-
imum prefix that is also an informative observation. Note
that . If has different
lower bounds in and , then always , as an in-
formative observation for will be made when empties
all but one body. Otherwise, the aforementioned vertex
exists, and if empties out prior to emptying out.
Since , and there exists at least one sequence where

, we get that
. However, this contradicts

the maximality of .
Therefore, if , then

.
We will now obtain a slightly stronger result for that will

be useful later.
Lemma 4: The expected value of is maxi-

mized when is near-complete for some vertex , and
contains all bodies.

Proof: For a two vertex graph with one edge, Lemma 3
implies that is maximized when there exists
a vertex (called ), in which the lower bound of is equal
to the number of bodies in , and another vertex in which
the lower bound of is one less than the number of bodies in
. An informative observation will only occur if completely

empties.
Let and be the distribution where places all bodies

into and the lower bound is equal to . Let be
any other distribution, and let be a set of lower bounds such
that is near-complete for . Note that, for both
and , an informative observation is only possible if
empties completely. However, since places fewer bodies in
than places in , any sequence of sensor observations

that results in an informative observation starting from
must result in as an intermediate distribution and set of
bounds. Therefore,

Fig. 3. [left] An environment that is represented by a graph with five vertices.
It is currently in a near-complete state, with the unfilled moving body in the
top-center region representing the only body not being tracked by the lower
bounds. Note that movements in to or out of the bottom-right region are neutral,
as they do not increase or decrease the number of bodies in the top-center region.
[right] An environment represented by that is also in a near-complete state.
Obtaining an informative reading in this environment is strictly harder than ob-
taining one in the environment on the left, as the probability of a progressive
movement is the same as in the left environment, but neutral movements are no
longer possible.

, where Catchup is a random variable denoting the
number of sensor observations required to reach from

. Since Catchup is at least one (because ), we have
that .
We next use to bound .
Lemma 5: If is near-complete for

and , then
.

Proof: An informative observation only occurs if emp-
ties completely.Wewill call a bodymovement progressive if the
body moves out of . We will call a body movement regressive
if the body moves into . We will call a body movement neu-
tral if it is not progressive or regressive.
In , neutral movements are impossible. If there are bodies

in , then there is a probability of a progressive move-
ment, and an probability of a regressive movement.
Each body has an identical probability of being selected as

the next body to move. If there are bodies in , then there
is a probability of a progressive movement. There is an

probability of a regressive or neutral movement.
Therefore, for all on that are near-complete

for , the probability of a progressive movement is the
same as in , and the probability of a regressive
movement in is at most the probability of a re-
gressive movement in (see Fig. 3). Therefore,

.
Combining all of these results leads to a bound on the EE-con-

vergence time.
Theorem 6: For any graph containing bodies, and

any distribution of bodies , the expectation
.

Proof: Our first task is to bound . Lemma 5
implies that . Lemma 4 implies that

when is near-complete
for a vertex .
We can bound by considering only one specific way

of clearing out . Suppose that, if is not cleared out in ex-
actly turns (we will refer to these turns as a round), then
the distribution is reset to a near-complete distribution for
and a new round is started. Let be the expected number
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of observations required to clear under this “resetting” con-
dition. Since the near-complete distribution has the highest ex-
pected number of observations until an informative observation,

.
The probability of a near-complete distribution in clearing

the vertex in a single round is

(1)

Stirling’s approximation yields
, which puts an upper

bound on the expected number of rounds until empties out.
This upper bound is

(2)

Since each round consists of sensor observations, 2 results
in the following upper bound on , which is also an upper
bound on

(3)

Since is the maximum expected number of stages for
an informative observation, and Theorem 1 implies that there
can be at most informative observations, we get that

(4)

VI. ESTIMATION OF THE NUMBER OF MOVING BODIES

We have been assuming that the total number of moving
bodies is known. Suppose that the number of bodies is not
known in advance. By combining the results of Section V with
the Markov bound

(5)

and Bayes’ Theorem

(6)

we can estimate the total number of bodies in a graph, assuming
that we have knowledge about the prior probability distribution
over the number of bodies.
Let Bdy be a random variable denoting the number of bodies

in the graph . For the purposes of brevity, we will use to
denote the event , and we will use to denote the
event .
Theorem 7: Let be the number of acquired sensor observa-

tions. Let be the sum of the lower bounds after observations
have been acquired. Let be an integer such that . The
following relationship holds:

(7)

Proof: Using Bayes’ Theorem, we get that
is equal to

(8)

Because the condition fixes the value of Bdy, the term
can be simplified to

. The Markov bound implies

(9)

Theorem 6 implies
. Additionally,

, as the term on the right is a strictly
stronger condition. Substituting these bounds into (8) yields

(10)

Theorem 7 can also be used to give a lower bound on
.

Corollary 8: Let be the number of acquired sensor observa-
tions. Let be the sum of the lower bounds after observations
have been acquired. Let be an integer such that . The
following relationship holds:

(11)

in which

(12)

Proof: The term

(13)

is an upper bound on the probability that . Since
is known, any remaining probability mass must be-

long to .
The Markov bound converges slowly. If the variance of

is relatively low, then we could obtain a faster
estimation of the number of bodies by using the Chebyshev
bound

(14)

Unfortunately, we have been unable to prove any bounds on
. However, simulations (in ) seem to indi-

cate that .

VII. A LOWER BOUND FOR THE EE-CONVERGENCE TIME

Corollary 2 establishes that each vertex must empty out at
least once in order to reduce to a counting information state. This
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implies that each body must move at least once. Under the expo-
nential random movement model, each body has an equal prob-
ability of being the one that moved during each sensor observa-
tion. Therefore, we can acquire a lower bound on the expected
number of required sensor observations by obtaining the ex-
pected number of sensor observations required until each body
has moved once. This is a restatement of the classical coupon
collector’s problem.
Theorem 9: For a graph containing bodies, and any dis-

tribution of bodies , the expectation ,
where .

Proof: If different bodies have moved so far, then there
is an probability that the next body that moves is
a body that moves for the first time. Therefore, if different
bodies have moved so far, the expected number of stages until a
new body moves is . Summing over
yields .
Theorem 10: The bound in Theorem 9 is tight.
Proof: To demonstrate tightness, we must con-

struct a graph and initial body distribution such that
. Let be the graph consisting of

disjoint, disconnected copies of . For the initial distribution
, place one body in each of the subgraphs. The informa-
tion state converges to the counting information state after
each vertex that initially contains a body empties out at least
once. Each vertex that initially contains a body starts with
only one body a piece, and each component contains only one
body. Therefore, if each body moves at least once, then each
vertex that contained a body in the initial distribution will have
emptied out at least once. By Corollary 2, this is sufficient to
demonstrate convergence to a counting information state.

VIII. RESULTS FOR

Due to ’s very simple structure, it is easier to analyze than
general graphs. In fact, an identical system, known as the Ehren-
fest Dog-flea, has been extensively studied in thermodynamics.
It has long been known that, regardless of the initial distribution
of the bodies in the graph, the number of bodies in one vertex
is well-described by a binomial distribution if enough time is
allowed to pass [17].
It is possible to get an exact answer (in recurrence form) for

the expected number of stages until convergence for any ini-
tial distribution of . Let be a random variable de-
noting the number of stages it would take for vertex to empty
out if started with bodies, with bodies total present in the
graph (due to the symmetry in the graph, could be substituted
for in the definition).
It is easy to determine the value of with a re-

currence. For base cases, we have and
. If there are bodies

in , then there is an probability that a body leaves ,
and an probability that a body enters . Therefore,
when , we have

(15)

To obtain a recurrence that determines for ar-
bitrary , we must add an additional term. Let be
a random variable denoting the number of stages required for
either of the vertices to empty out, given that the vertex with
fewer bodies contains bodies, and the whole graph contains
bodies.
As a base case, note that when is odd

(16)

For even , the equation is
. As in the previous function,

. For other , the relationship is sim-
ilar to (15)

(17)

Combining these two functions leads to a solution for arbi-
trary distributions over .
Theorem 11: If is a distribution of bodies over , with

, that places bodies in a single vertex, and
in the other vertex, with , then

.
Proof: The term is the expected number of

stages for one of the two vertices to empty out. When one vertex
empties out, the other must be full, meaning that the expected
number of remaining steps for the second vertex to empty out is

.
The authors were unable to determine a closed form so-

lution for the expectation of either or . However,
it is not difficult to derive an exponential lower bound on

. Theorem 11 implies that this is also a lower
bound on , regardless of the initial distribution .
Theorem 12: If is a distribution of bodies over , with

, then

(18)

Proof: For , with , let be the ex-
pected number of steps required to move from a state in which
contains bodies to a state in which contains ele-

ments. Note that .
Combining this identity with (15) yields

(19)

Combining the terms and multiplying by
gives

(20)
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Separating into
and subtracting from both sides yields

(21)

Since when , the value of grows
as becomes smaller when . Due to the left term on
the right side of (21), we know that . Therefore

(22)

We can use the version of Stirling’s approximation found in
[18] to bound the factorials. For even , this becomes

(23)

For odd , the equation becomes

(24)

The two inequalities are almost the same, but (24) is smaller for
.

IX. CONCLUSION AND FUTURE WORK

This paper has presented a necessary and sufficient condi-
tion for determining the distribution of a number of moving
bodies in an environment made of regions separated by sensor
beams. Additionally, this paper has determined bounds on the
expected number of sensor observations required to determine
this distribution under the exponential randommovementmodel
and shown how these bounds can be used to estimate the total
number of moving bodies when this number is not known in
advance.
One goal is to determine bounds on the expected number

of sensor readings until convergence to a counting informa-
tion state under alternate movement models. For example, if the
moving bodies are people, then it is perhaps useful to consider a
model where the movement of one body affects the probability
of another body moving, as people often tend to enter and exit
locations in groups. A model in which the paths of the moving
bodies are deterministic but the transition times are randommay
be useful for modelling “obstacle course”-like situations and
seems relatively easy to analyze.
Under the exponential random movement model, Theorems

10 and 12 imply that for a single graph, one starting distri-
bution causes convergence to the counting information state
in an expected polynomial number of stages, and a different
starting distribution causes convergence in an expected expo-
nential number of stages (note that the graph in Theorem 10
can be treated as if all the bodies start in one component).

It would be useful to know under which conditions this polyno-
mial-to-exponential “phase transition” occurs. Initial concentra-
tion of the moving bodies and the length of the shortest directed
cycle are likely to be important parameters.
Exploiting the cover time of random walks is one technique

that could be used to produce improved bounds. The cover time
of a vertex for some graph is the expected number
of steps required for a body initially placed in that is taking
a random walk to reach every vertex in . The cover time of
the graph is the maximum cover time over all possible starting
vertices. For a strongly connected graph containing
bodies, one could make a secondary graph with a vertex set
consisting of the length strings with characters drawn from

. Each vertex of is a string that contains the location of
each of the bodies in . For , , an edge exists
between them if their corresponding strings of the vertices
differ in exactly one character, and the differing character in
has an edge in to the differing character from . A random
walk by a single body in can represent the movements of
all the bodies in . Since is strongly connected, so is .
Since for each vertex , there exists a vertex in
that represents a state in which is empty, the expected time to
convergence to a counting information state in is less than
the expected cover time of .
For a simple example, consider the case where . In

this case, is the -dimensional hypercube. For each vertex of
to empty out, two vertices of have to be reached. One is the

vertex of representing the state where all bodies are in
, and the other is the vertex of representing the state

where all bodies are in . Since is a regular graph
with vertices, [19] implies that the expected cover time is at
most steps. Therefore, . This
is not as good of a bound as the ones presented earlier in the
paper, but further refinement of the technique may yield useful
results.
Additionally, simulation data of various movement models

in various types of graphs would be useful. A small number
of simulations with the exponential movement model were per-
formed in directed cycles (in order to determine the relationship
between the size of the smallest directed cycle and the EE-con-
vergence time), and in directed paths (to simulate a building
evacuation scenario, with the formulation slightly modified to
allow for the sinks in the paths). The data and an analysis are
available in [20].
Finally, the information states used in this paper would re-

quire heavy modification if they are to be used in systems with
sensor noise. The nature of these modifications would depend
on the way that the noise is modelled (while it would be rela-
tively easy to model false negatives, false positives would be
more complicated). One possibility would be to define a false
positive/negative rate (perhaps one false positive/negative per
twenty sensor readings), and then loosen the upper and lower
bounds accordingly as sensor data accumulates. Note that under
this model of sensor noise, it would no longer generally be
possible to acquire a counting information state, as any sensor
error would introduce uncertainty. An appropriate goal would
be knowledge of the locations of at least a specific fraction of
the bodies with a certain level of confidence.
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APPENDIX

Proof of Theorem 1: This will be shown inductively. As a
base case, note that when , all interval lengths are and

for all .
Assume that in stage , all intervals had length

. Let the th sensor observation be the transition
of a body from to . If and , then
each hypothesis can be transformed into
a distribution consistent with by removing
one body from (there must be at least one as )
and adding a body to (there must be room for at least one
more as ). Therefore, is constructed
by setting and for all , .
For vertices and , , ,

, and . Only the bounds of
and have been changed, and their interval lengths remain

unchanged because their upper and lower bounds have changed
by the same amount.
Since all intervals have length in stage ,

for any hypothesis in in which there exists
a vertex that contains bodies, all other vertices must
contain bodies. Therefore, if , then any hy-
pothesis in which contained 0 bodies in stage must
have been false, which means that any hypothesis in which a
vertex contained bodies was also false. All other hy-
potheses in can be modified into hypotheses
consistent with by moving one body from
to . For each where , there exists a hypothesis

in , where contains bodies
and contained one body. There also exists a hypothesis in

, where contained no bodies. Therefore,
is constructed by setting and
. For each vertex where , the bounds are

constructed by setting and . For
each vertex, the difference between the upper and lower bound
at stage is one lower than the difference in stage .
Note that if , then for all other vertices , the

value of must be 0, as any hypothesis that places bodies
into must place zero bodies in all other vertices. Therefore,
the situation where a hypothesis is disqualified because a body
moves into a vertex with an upper bound of bodies is a special
case of the situation in the previous paragraph.
Therefore, for all and all , the interval length

.
Proof of Corollary 2: Let be some initial distribution of

bodies. Suppose that there is a vertex that did not empty out
during the first stages. Let be a vertex such that . Now,
consider an initial distribution that is exactly the same as
except there is one more body in and one fewer body in .
Since, starting from initial distribution , the vertex did not
fully empty out in the first stages, both and are capable
of producing . Note also that starting from initial distri-
bution , the vertex did not empty out in the first stages.
Therefore, it is impossible to determine if the starting distribu-
tion was or . Since one would get a different distribution at
stage when starting from than one would get by starting from
, and did not rule either out, that means that there is

more than one hypothesis in , so is not a
counting information state.
In the other direction, suppose that for each vertex ,

there exists a stage prior to in which was empty. If a body
moves in to , the lower bound on increases. If a body leaves
when has a lower bound of 1 or greater, the lower bound

on decreases. If a body leaves when has a lower bound of
0, an informative observation occurs. Suppose started with
bodies and emptied out at stage (where ). Since is
empty at stage , if there were entries into , then there were at
least exits from . Since there were at most entries into
and ’s lower bound was initially 0, at most exits could have
decremented the lower bound of . Therefore, at least exits
from were informative observations. If each vertex empties
out, then each vertex produces a number of informative obser-
vations equal to the number of bodies that it initially contained.
Therefore, if each vertex empties out by stage , there is one
informative observation for each body, which means that the
interval length is 0 at stage .
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