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Abstract This paper examines the problem of determining the distribution of a num-
ber of indistinguishable moving bodies located in regions separated by sensor beams
that can detect whether a body moves across them. We characterize the conditions
under which an exact distribution of bodies can be determined, and compute bounds
on the expected number of sensor observations required to determine this exact dis-
tribution for a certain movement model of the bodies.

1 Introduction

Consider determining, in a large office building with many rooms, how its anony-
mous occupants are scattered in the rooms. Such information can be of vital im-
portance in scenarios such as coordinated building evacuation in an emergency or
characterizing building usage for energy optimization. Let the distribution of the
occupants be the precise number of occupants per room. The task is relatively easy
if an initial distribution of the occupants is known: We may simply place sensor
beams at doorways of rooms to figure out the change in population for each room
as the occupants move around. Adding or subtracting the change from the initial
count then yields the answer. But what if the a priori distribution of the occupants is
unavailable? Could the task still be solved without additional sensors?

In this paper, we show that, somewhat surprisingly, the aforementioned simplis-
tic sensor setup is still powerful enough for determining the occupant distribution as
required, given only an initial total population and enough time. More precisely, we
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Fig. 1 a) A simple environment with three regions and two sensing units separating them, in which
a blue body is moving from region r1 to region r2. b) The corresponding graph representation of
the environment, induced by the sensor placement.

characterize the capabilities and limitations of using beams to keep track of bodies
moving around in a closed and bounded environment partitioned into regions by
these beams. A beam detector is perhaps one of the simplest sensors: As a fixed
sensor, it detects that a moving body passes through it but it cannot determine any
other property of the body. With two of these, which we call a sensing unit, it is also
possible to tell the movement direction of the passing body. Fixing such sensing
units between regions of interest, we have at any moment the net number of bodies
that have moved in/out of any region. Figure 1(a) shows one of the simplest environ-
ments under this model. Note that the regions and sensing units can be effectively
represented as vertices and edges of a (directed) graph (Figure 1(b)). The bodies
occupy the vertices of the graph; each sensor observation corresponds to a crossing
of a body over an (directed) edge of the graph.

The contributions of this paper are twofold. First, we determine a necessary and
sufficient condition on the initial distribution of bodies and the sensor history that
allows the determination of an exact count of the bodies in each region. Second,
we determine bounds on the expected number of sensor observations required to
acquire a count of the bodies in each region for a specific movement model of the
bodies. We show that for some starting distributions, the expected number of sensor
observations required to determine the distribution is exponential in the number of
bodies, while for other starting distributions (even in the same graph), the expected
number of observations required to determine a distribution is polynomial in the
number of bodies.

Various simple sensor models have been investigated in the task of target tracking
and counting. Binary proximity sensors have been employed to estimate positions
and velocities of a moving body using particle filters [1] and moving averages [11].
The performance limit of a binary proximity sensor network in tracking a single tar-
get was discussed and approached in [13], followed by an extension to the tracking
of multiple targets [14]. The task of counting multiple targets using simple sensors
was also studied in [2], in which the problem of accurately counting the number of
targets with overlapping footprints using pressure sensor arrays was solved with a
novel approach of integrating over Euler characteristics. In the works mentioned so
far, the sensor network’s aggregate sensing range must cover the targets of inter-
est at all times. When only a subset of an environment is guarded, word problems
in groups [4, 5] naturally arise. For the setup in which targets moving inside a 2D
region are monitored with a set of sensor beams, [15] studied the issues of possi-
ble target locations, target path reconstruction up to homotopy, and path winding
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numbers. Here, the surfacing of more interesting behaviors also induces an increase
in computational complexity as well as convergence time, which is similar to what
we observe in this paper. Controlling of sensorless wild bodies using various forms
of gates was explored in [3], and some of the physically implemented gates used
laser sensor beams to detect crossings between regions. Related to the control of
sensorless wild bodies is the sensorless manipulation of polygonal parts studied in
[6, 10].

If the limitation on using simple sensor models is lifted, research literature on tar-
get counting and tracking expands. Given the amount of papers and their diversified
nature on this topic, we only mention a few of them. In [9] a simple virtual sen-
sor, capable only of reporting visible features of the polygonal environment and the
presence of indistinguishable targets, is able to count static targets using a minimal
amount of data storage, though it is unclear how the simple virtual sensor could be
implemented by simple physical sensors. In the domain of wireless sensor networks,
the study of target counting and tracking is frequently coupled with communication
efficiency and other concerns [7]. In [16], Simultaneous Localization and Mapping
(SLAM) and Detection and Tracking of Moving Objects (DTMO) are combined to
attack both problems at the same time. Real-time people counting with a network of
image sensors is studied in [17].

The rest of the paper is organized as follows. Section 2 contains definitions that
will be used throughout the paper. Section 3 describes the conditions under which
the distribution of bodies can be determined. Section 4 describes a movement model
for the bodies called the exponential random movement model. This section also
describes a physical system that produces behavior closely approximated by the
exponential random movement model. Section 5 contains an upper bound on the
expected number of sensor observations required to count the bodies in each region
when the behavior of the bodies matches the exponential random movement model.
Section 6 contains a method of using the upper bound to estimate the number of
bodies in the environment if that number is not known in advance. Section 7 contains
a tight lower bound on the expected number of sensor observations required to count
the number of bodies in each region when the behavior of the bodies matches the
exponential random movement model. Section 8 contains results for a very simple
2-cycle environment. Section 9 discusses directions of future research.

2 Definitions

The vertices of an r-vertex directed graph G containing no sinks 1are populated by
a set M of moving bodies, in which |M|= m. This graph represents the regions and
sensor beams of a physical environment (see Figure 1). The bodies are capable of
travelling through the edges into other vertices. When a body moves, a sensor ob-
servation y is generated that identifies the edge that the body traversed. The system
is in the kth stage after the kth sensor observation has been generated. Let V (G) be
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the vertex set of graph G. A distribution is an assignment of the moving bodies to
vertices of G.

We assume that no information about the initial distribution of moving bodies
is known. The history information state Ihist(k) = [y1, . . . ,yk] is the list containing
the first k sensor observations. The bounds information state Ibounds(k) consists of
two r-length vectors [u1,k, . . . ,ur,k] (the upper bounds) and [�1,k, . . . , �r,k] (the lower
bounds), where ui,k is the most bodies that could be in vertex vi in stage k while
remaining consistent with the previous sensor observations, and � i,k is the fewest
bodies that could be in vertex vi at stage k while remaining consistent with the previ-
ous sensor observations. The interval length length(k,v i) is the value of ui,k − �i,k at
stage k. A bounds information state with an interval length of 0 is called a counting
information state. Once a counting information state has been reached, it is trivially
easy to keep track of the number of bodies in each region. Since the bodies are in-
distinguishable to the sensors, a counting information state is an exact description
of the system state. For some information state I, let H(I) be the hypothesis set of I,
defined as the set of distributions of bodies over the vertices that are consistent with
the information state I.

When a distribution d and lower bound set L are presented in the form (d,L),
then the lower bound set L is implied to be consistent with the distribution d (in
other words, there is no vertex vi in which �i is greater than the actual number of
bodies in vi). A distribution and lower bound set (d,L) is near-complete for vertex
vi if the lower bound � j is equal to the the number of bodies in v j for all j �= i, and
the number of bodies in vi is equal to �i+1. Note that (d,L) is near-complete if and
only if

�
�i = m− 1.

3 Counting moving bodies

In this section, the goal is to characterize what types of initial distribution and in-
formation history combinations allow the determination of a counting information
state. As a first step, we show that, as long as a count of the total number of bodies
in the graph is known in advance, the lower bounds of the bounds information state
are sufficient to represent all that is known about the distribution of the bodies.

Theorem 1. For all k ∈ N and all v ∈ V (G), the interval length length(k,v) = m−�r
i=1 �i,k.

Proof. This will be shown inductively. As a base case, note that when k = 0, all
interval lengths are m and �i,0 = 0 for all 1 ≤ i ≤ r.

Assume that in stage k − 1, all intervals had length m−�r
i=1 �i,k−1. Let the

kth sensor observation be the transition of a body from v s to vt . If �s,k−1 ≥ 1 and
ut,k−1 ≤ m− 1, then each hypothesis h ∈ H(Ibounds(k− 1)) can be transformed into
a distribution h′ consistent with Ibounds(k − 1) + yk by removing one body from

1 Graphs with sinks are excluded because bodies located in sinks are unable to move to different
vertices, which renders them undetectable.
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vs (there must be at least one as �s,k−1 ≥ 1) and adding a body to vt (there must
be room for at least one more as ut,k−1 ≤ m− 1). Therefore, Ibounds(k) is con-
structed by setting �i,k = �i,k−1 and ui,k = ui,k−1 for all i �= s, t. For vertices vs and
vt , �s,k = �s,k−1 − 1, us,k = us,k − 1, �t,k = �t,k−1 + 1, and ut,k = ui,k−1 + 1. Only the
bounds of vs and vt have been changed, and their interval lengths remain unchanged
because their upper and lower bounds have changed by the same amount.

Since all intervals have length m−�r
i=1 �i,k−1 in stage k− 1, for any hypothesis

in H(Ibounds(k− 1)) in which there exists a vertex vi that contains ui,k−1 bodies, all
other vertices must contain �i,k−1 bodies. Therefore, if �s,k−1 = 0, then any hypothe-
sis in which vs contained 0 bodies in stage k−1 must have been false, which means
that any hypothesis in which a vertex vi contained ui,k−1 bodies was also false. All
other hypotheses in H(Ibounds(k− 1)) can be modified into hypotheses consistent
with Ibounds(k− 1)+ yk by moving one body from vs to vt . For each vi �= vs, there
exists a hypothesis in H(Ibounds(k− 1)) where vi contains ui,k−1 − 1 bodies and vs

contained one body. There also exists a hypothesis in H(I bounds(k− 1)) where vi

contained no bodies, so when the incorrect hypotheses are discarded and a body
is moved from vs to vt , all intervals shorten by one body. Therefore, I bounds(k) is
constructed by setting �t,k = �t,k−1 + 1 and ut,k = ut,k−1. For each vertex vi where
vi �= vt , the bounds are constructed by setting � i,k = �i,k−1 and ui,k = ui,k−1.

Note that if ut,k−1 = m, then for all other vertices vi, the value of �i,k−1 must be
0, as any hypothesis that places m bodies into vt must place zero bodies in all other
vertices. Therefore, the situation where a hypothesis is disqualified because a body
moves into a vertex with an upper bound of m bodies is a special case of the situation
in the previous paragraph.

Therefore, for all k ∈ N and all v ∈ V (G), the interval length length(k,v) = m−�r
i=1 �i,k. ��
Theorem 1 implies that keeping track of an upper bound for each individual

vertex is redundant, as all upper bounds can be reconstructed using the lower bounds
and the total number of bodies. This means that once the lower bound of a vertex v i

and the number of bodies in vi are the same, we have in some sense learned all that
we can from vi. A corollary to Theorem 1 formalizes this notion. An informative
observation is a sensor observation that decreases the interval length.

Corollary 2. The information state Ibounds(k) is a counting information state if and
only if for each vertex v ∈ V (G) there exists a stage j, where 0 ≤ j ≤ k, and v
contains no bodies at stage j.

Proof. Let d be some initial distribution of bodies. Suppose that there is a vertex p
that did not empty out during the first k stages. Let q be a vertex such that q �= p.
Now, consider an initial distribution d ′ that is exactly the same as d except there is
one more body in q and one fewer body in p. Since, starting from initial distribution
d, the vertex p did not fully empty out in the first k stages, both d and d ′ are capable
of producing Ihist(k). Note also that starting from initial distribution d ′, the vertex
q did not empty out in the first k stages. Therefore, it is impossible to determine if
the starting distribution was d or d ′. Since one would get a different distribution at
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stage k when starting from d than one would get by starting from d ′, and Ihist(k) did
not rule either out, that means that there is more than one hypothesis in I bounds(k),
so Ibounds(k) is not a counting information state.

In the other direction, suppose that for each vertex v ∈V (G), there exists a stage
prior to k in which v was empty. If a body moves in to v, the lower bound on v in-
creases. If a body leaves v when v has a lower bound of 1 or greater, the lower bound
on v decreases. If a body leaves v when v has a lower bound of 0, an informative
observation occurs. Suppose v started with b bodies, emptied out at stage j (where
0 ≤ j ≤ k). Since v is empty at stage j, if there were a entries into v, then there were
at least a+ b exits from v. Since there were at most a entries into v and v’s lower
bound was initially 0, at most a exits could have decremented the lower bound of
v. Therefore, at least b exits from v were informative observations. If each vertex
empties out, then each vertex produces a number of informative observations equal
to the number of bodies that it initially contained. Therefore, if each vertex empties
out by stage k, there is one informative observation for each body, which means that
the interval length is 0 at stage k. ��

4 The exponential random movement model

In the following sections, we will determine bounds on the expected number of
steps required to converge to a counting information state. In order for these bounds
to be well-defined, we require a model for the movement of the bodies. We have
chosen to focus on a model in which the movement of the bodies are associated
with exponential random variables.

Associate each edge of the graph with a positive weight. For a body a ∈ M con-
tained in a vertex v, the amount of time a spends in v is described by an exponential
random variableY (v) with a rate parameter proportional to the sum of the weights of
the outgoing edges incident to v. When a moves, it selects an outgoing edge incident
to v (the probability of an edge being selected is proportional to its weight).

One physical system that approximately produces this movement model is balls
bouncing via specular bounces in polygonal regions separated by small doorways,
similar to mathematical billiards. See Figure 2 for a representative environment and
the distribution of the length of time a body remains in a single room between tran-
sitions.

A graph is edge weight balanced if there exists some positive constant W such
that for each vertex vi, the sum of the weight of the outgoing edges of v i is equal
to W . For example, an out-regular directed graph with unit edge weights is edge
weight balanced. If a graph is edge weight balanced, then each body has the same
probability of being the next body selected to move.

Let C2 be a directed cycle graph on two vertices where both edges have weight
1. Given a graph G and a distribution (d,L) that is near-complete for a vertex v i ∈
V (G), let C2(d,L) be a distribution and lower bound set on C2 that is near-complete
for v1 ∈C2 where v1 contains the same number of bodies that d places in v i.
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Fig. 2 [top] An environment with three symmetric regions. [bottom] The distribution of the
lengths of time spent in a single region between transitions compared to an exponential random
variable with the same mean. The values along the x-axis count simulation steps.

Let Con(G,d) be a random variable denoting the number of sensor observations
required to converge to a counting information state in an edge weight balanced
graph G starting from an initial body distribution d with the bodies using the ex-
ponential random movement model. We will refer to E[Con(G,d)] as the expected
exponential convergence time, or the EE-convergence time. The word “exponential”
in the term refers to the behavior of the random variables governing the motion of
the bodies. The remainder of this paper will focus primarily on placing bounds on
the EE-convergence time.

5 An upper bound on the EE-convergence time

Let graph G contain m bodies. For a distribution of bodies and set of lower bounds
(d,L), let Info(G,d,L) be a random variable denoting the number of stages until an
informative observation occurs. Let β (G) be the maximum of E[Info(G,d,L)] over
all choices of (d,L).
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Lemma 3. If E[Info(G,d,L)] = β (G), then (d,L) is near-complete.

Proof. Suppose that the lemma is false and let L be any set of lower bounds con-
sistent with d such that

�
�i∈L �i < m− 1 and E[Info(G,d,L)] is maximal. Let L ′

be a set of lower bounds consistent with d such that
�

�′i∈L′ �
′
i = m− 1 and for all

1 ≤ i ≤ r, �′i ≥ �i. Note that, because
�

�′i∈L′ �
′
i = m− 1, there is exactly one vertex

p where p’s lower bound in L ′ is not equal to its number of bodies (the two values
differ by exactly one body). Similarly, either there exists a vertex q such that q �= p
and q’s lower bound in L is also not equal to its number of bodies, or p’s lower
bound in L differs from its number of bodies by two or more.

Let S′ be the set of finite sequences of sensor observations that, starting from
L′ and d, contain exactly one informative observation, located at the end of the
sequence. For s∈ S, let p(s) be the probability that sequence s occurs. Note that p(s)
is only dependent on s and d, not on L ′. Note that E[Info(G,d,L′)] =

�
s′∈S′ p(s′)|s′|.

Since the interval length for L′ is one, each sequence in S ′ must at some point move
all bodies out of p.

Since p also has a lower bound in L that differs from its number of bodies, any
sequence s′ ∈ S′ contains a minimum prefix s that is also an informative observa-
tion. Note that E[Info(G,d,L)] =

�
s′∈S p(s′)|s|. If p has different lower bounds

in L and L′, then always s �= s′, as an informative observation for L will be made
when p empties all but one body. Otherwise, the aforementioned vertex q ex-
ists, and s �= s′ if q is emptied out prior to p emptying out. Since |s| ≤ |s ′|, and
there exists at least one sequence where |s| < |s′|, we get that E[Info(G,d,L)] =�

s′∈S p(s′)|s| <�s′∈S p(s′)|s′| = E[Info(G,d,L)]. However, this contradicts the
maximality of E[Info(G,d,L)].

Therefore, if E[Info(G,d,L)] = β (G), then
�

�i∈L �i = m− 1. ��
We will now obtain a slightly stronger result for C2 that will be useful later.

Lemma 4. The expected value of Info(C2,d,L) is maximized when (d,L) is near-
complete for some vertex v1, and v1 contains all m bodies.

Proof. For a two vertex graph with one edge, Lemma 3 implies that E[Info(C 2,d,L)]
is maximized when there exists a vertex (called v2), in which the lower bound of v2

is equal to the number of bodies in v2, and another vertex v1 in which the lower
bound of v1 is one less than the number of bodies in v1. An informative observation
will only occur if v1 completely empties.

Let d and L be the distribution where d places all m bodies into v 1 and the
lower bound �1 is equal to m− 1. Let d∗ be any other distribution, and let L∗ be
a set of lower bounds such that (d ∗,L∗) is near-complete for v1. Note that, for
both (d,L) and (d∗,L∗), an informative observation is only possible if v1 empties
completely. However, since d∗ places fewer bodies in v1 than d places in v1, any
sequence of sensor observations that results in an informative observation starting
from (d,L) must result in (d∗,L∗) as an intermediate distribution and set of bounds.
Therefore, E[Info(C2,d,L)] = E[Info(C2,d∗,L∗)] +E[Catchup], where Catchup is
a random variable denoting the number of sensor observations required to reach
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(d∗,L∗) from (d,L). Since Catchup is at least one (because d �= d ∗), we have that
E[Info(C2,d,L)] > E[Info(C2,d∗,L∗)]. ��

Recall that a graph is edge weight balanced if each vertex has the same sum of
weights of incident edges.

Lemma 5. If G is edge weight balanced and (d,L) is near-complete for v i ∈ V (G)
and (d2,L2) =C2(d,L), then E[Info(G,d,L)]≤ E[Info(C2,d2,L2)].

Proof. An informative observation only occurs if v i empties completely. We will
call a body movement progressive if the body moves out of v i. We will call a body
movement regressive if the body moves into vi. We will call a body movement neu-
tral if it is not progressive or regressive.

In C2, neutral movements are impossible. If there are z bodies in v 1, then there is a
z/m probability of a progressive move, and an (m− z)/m probability of a regressive
movement.

Since G is edge weight balanced, each body has an identical probability of being
selected as the next body to move. If there are z bodies in v i, then there is a z/m
probability of a progressive move. There is a (m− z)/m probability of a regressive
or neutral movement.

Therefore, for all (d,L) on G that are near-complete for v i, the probability of
a progressive move is the same as in C2(d,L), and the probability of a regressive
move in (d,L) is at most the probability of a regressive move in C2(d,L). Therefore,
E[Info(G,d,L)] ≤ E[Info(C2,d2,L2)]. ��

Combining all of these results leads to a bound on the EE-convergence time.

Theorem 6. For any edge weight balanced graph G containing m bodies, and any

distribution of bodies d, the expectation E[Con(G,d)]≤ (2π)−1/2m3/2em− 1
12m+1 .

Proof. Our first task is to bound β (G). Lemma 5 implies that β (G) ≤ β (C2).
Lemma 4 implies that β (C2) = E[Info(C2,d,L)] when (d,L) is near-complete for
a vertex v1.

We can bound β (C2) by considering only one specific way of clearing out v 1.
Suppose that, if v1 is not cleared out in exactly m turns (we will refer to these m turns
as a round), then the distribution is reset to a near-complete distribution for v 1 and
a new round is started. Let γ(C2) be the expected number of observations required
to clear v1 under this “resetting” condition. Since the near-complete distribution
has the highest expected number of observations until an informative observation,
γ(C2)≥ β (C2).

The probability of a near-complete distribution in C2 clearing the vertex v1 in a
single round is

m−1�
i=0

m− i
m

=
m!
mm . (1)

Stirling’s approximation yields m! ≥ √
2πm(m/e)me

1
12m+1 , which puts an upper

bound on the expected number of rounds until v 1 empties out. This upper bound is
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em

√
2πme

1
12m+1

. (2)

Since each round consists of m sensor observations, Equation 2 results in the
following upper bound on γ(C2), which is also an upper bound on β (G).

β (G)≤ β (C2)≤ γ(C2)≤
√

mem

√
2πe

1
12m+1

. (3)

Since β (G) is the maximum expected number of stages for an informative obser-
vation, and Theorem 1 implies that there can be at most m informative observations,
we get that

E[Con(G,d)]≤ mβ (G)≤ m
3
2 em

√
2πe

1
12m+1

. (4)

��

6 Estimation of the number of moving bodies

We have been assuming that the total number of moving bodies is known. Suppose
that the number of bodies is not known in advance. By combining the results of
Sections 5 with the Markov bound

Pr[X ≥ α]≤ E[X ]

α
(5)

and Bayes’ Theorem,

Pr[A | B] =
Pr[B | A]Pr[A]

Pr[B]
(6)

we can estimate the total number of bodies in an edge weight balanced graph, as-
suming that we have knowledge about the prior probability distribution over the
number of bodies.

Let Bdy be a random variable denoting the number of bodies in the graph G.

Theorem 7. Let z be the number of acquired sensor observations. Let k be the sum
of the lower bounds after z observations have been acquired. Let j be an integer
such that j > k. The following relationship holds:

Pr[Bdy = j | Bdy = k∪ (Bdy > k∩Con(G,d)≥ z)]≤ j
3
2 e j

z
√

2πe
1

12 j+1

Pr[Bdy = j]
Pr[Bdy = k]

.

(7)
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Proof. Using Bayes’ Theorem, we get that Pr[Bdy = j | Bdy = k∪ (Bdy > k ∩
Con(G,d)≥ z)] is equal to

Pr[Bdy = k∪ (Bdy > k∩Con(G,d)≥ z) | Bdy = j]Pr[Bdy = j]
Pr[Bdy = k∪ (Bdy > k∩Con(G,d)≥ z)]

. (8)

Because the condition fixes the value of Bdy, the term Pr[Bdy = k ∪ (Bdy >
k∩Con(G,d)≥ z) | Bdy= j] can be simplified to Pr[Con(G,d)≥ z | Bdy= j]. The
Markov bound implies

Pr[Con(G,d)≥ z | Bdy = j]≤ E[Con(G,d) | Bdy = j]
z

. (9)

Theorem 6 implies E[Con(G,d) | Bdy= j]≤ j
3
2 e j

√
2πe

1
12 j+1

. Additionally, Pr[Bdy=

k∪ (Bdy > k∩Con(G,d) ≥ z)] ≥ Pr[Bdy = k], as the term on the right is a strictly
stronger condition. Substituting these bounds into Equation 8 yields

Pr[Bdy = j | Bdy = k∪ (Bdy > k∩Con(G,d)≥ z)]≤ j
3
2 e j

z
√

2πe
1

12 j+1

Pr[Bdy = j]
Pr[Bdy = k]

.

(10)
��

Theorem 7 can also be used to give a lower bound on Pr[Bdy = k | Bdy = k∪
(Bdy > k∩Con(G,d)≥ z)].

Corollary 8. Let z be the number of acquired sensor observations. Let k be the sum
of the lower bounds after z observations have been acquired. Let j be an integer
such that j > k. The following relationship holds:

Pr[Bdy = k | Bdy = k∪ (Bdy > k∩Con(G,d)≥ z)]≥ 1−λ , (11)

in which

λ =
∞�

j=k+1

j
3
2 e j

z
√

2πe
1

12 j+1

Pr[Bdy = j]
Pr[Bdy = k]

. (12)

Proof. The term
∞�

j=k+1

j
3
2 e j

z
√

2πe
1

12 j+1

Pr[Bdy = j]
Pr[Bdy = k]

(13)

is an upper bound on the probability that Bdy > k. Since Bdy ≥ k is known, any
remaining probability mass must belong to Pr[Bdy = k | Bdy = k ∪ (Bdy > k ∩
Con(G,d)≥ z)]. ��
The Markov bound converges slowly. If the variance of Con(G,d) is relatively low,
then we could obtain a faster estimation of the number of bodies by using the Cheby-
shev bound
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Pr[|X −E[X ]| ≥ α
�

Var[X ]≤ 1
α2 . (14)

Unfortunately, we have been unable to prove any bounds on Var[Con(G,d)].
However, simulations (in C2) seem to indicate that Var[Con(G,d)]≈ E[Con(G,d)]2.
Therefore, it is unlikely that the Chebyshev bound would produce an estimate that
would converge more quickly that the Markov bound.

7 A lower bound for the EE-convergence time

Corollary 2 establishes that each vertex must empty out at least once in order to
reduce to a counting information state. This implies that each body must move at
least once. If the graph is edge weight balanced, then each body has an equal prob-
ability of being the one that moved during each sensor observation. Therefore, we
can acquire a lower bound on the expected number of required sensor observations
by obtaining the expected number of sensor observations required until each body
has moved once. This is a restatement of the classical coupon collector’s problem.

Theorem 9. For an edge weight balanced graph G containing m bodies, and
any distribution of bodies d, the expectation E[Con(G,d)] ≥ mHm, where Hm =�m

i=1
1
i =Θ(lnm).

Proof. If j different bodies have moved so far, then there is a (m− j)/m probability
that the next body that moves is a body that moves for the first time. Therefore, if j
different bodies have moved so far, the expected number of stages until a new body
moves is m/(m− j). Summing over 0 ≤ j ≤ m− 1 yields mHm. ��
Theorem 10. The bound in Theorem 9 is tight.

Proof. To demonstrate tightness, we must construct a graph G and initial body dis-
tribution d such that E[Con(G,d)] = mHm. Let G be the graph consisting of m dis-
joint, disconnected copies of C2 with all edge weights set to 1. Note that this graph
is edge weight balanced. For the initial distribution d, place one body in each of
the C2 subgraphs. The information state converges to the counting information state
after each vertex that initially contains a body empties out at least once. Each vertex
that initially contains a body starts with only one body a piece, and each compo-
nent contains only one body. Therefore, if each body moves at least once, then each
vertex that contained a body in the initial distribution will have emptied out at least
once. By Corollary 2, this is sufficient to demonstrate convergence to a counting
information state. ��
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8 Results for C2

Due to C2’s very simple structure, it is easier to analyze than general graphs. It is
possible to get an exact answer for the expected number of stages until convergence
for any initial distribution of C2. Let Out(a,m) be a random variable denoting the
number of stages it would take for vertex v1 to empty out if v1 started with a bodies,
with m bodies total present in the graph (due to the symmetry in the graph, v 2 could
be substituted for v1 in the definition.

It is easy to determine the value of Out(a,m) with a recurrence. For base cases,
we have E[Out(0,m)] = 0 and E[Out(m,m)] = 1+E[Out(m− 1,m)]. If there are a
bodies in v1, then there is an a/m probability that a body leaves v1, and an (m−a)/m
probability that a body enters v1. Therefore, when a �= 0, we have

E[Out(a,m)] = 1+
a
m

E[Out(a− 1,m)]+
m− a

m
E[Out(a+ 1,m)]. (15)

To obtain a recurrence that determines E[Con(C2,d)] for arbitrary d, we must
add an additional term. Let Out′(a,m) be a random variable denoting the number
of stages required for either of the vertices to empty out, given that the vertex with
fewer bodies contains a bodies, and the whole graph contains m bodies.

As a base case, note that when m is odd,

[Out′(�m/2�,m)] = 1+ �m/2�E[Out′(�m/2�,m)]+ �m/2�E[Out′(�m/2�− 1,m)].
(16)

For even m, the equation is E[Out ′(m/2,m)] = 1+E[Out′(m/2− 1,m)]. As in the
previous function, E[Out′(0,m)] = 0. For other m, the relationship is similar to Equa-
tion 15:

E[Out′(a,m)] = 1+
a
m

E[Out′(a− 1,m)]+
m− a

m
E[Out′(a+ 1,m)]. (17)

Combining these two functions leads to a solution for arbitrary distributions over
C2.

Theorem 11. If d is a distribution of m bodies over C2, with m > 1, that places
a bodies in a single vertex, and m− a in the other vertex, with a ≤ m− a, then
E[Con(C2,d)] = E[Out′(a,m)]+E[Out(m,m)].

Proof. The term E[Out′(a,m)] is the expected number of stages for one of the two
vertices to empty out. When one vertex empties out, the other must be full, meaning
that the expected number of remaining steps for the second vertex to empty out is
E[Out(m,m)]. ��

The authors were unable to determine a closed form solution for the expectation
of either Out or Out′. However, it is not difficult to derive an exponential lower
bound on E[Out(m,m)]. Theorem 11 implies that this is also a lower bound on
E[Con(C2,d)], regardless of the initial distribution d.
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Theorem 12. If d is a distribution of m bodies over C2, with m > 1, then

E[Con(C2,d)]≥ E[Out(m,m)]≥ 2m+ 3
2�

π(m− 1)(m+ 1)e
9m−8

(12m−11)(3m−3)

= Ω
�

2m

m
3
2

�
.

Proof. For 0≤ a< m, with m> 1, let ka,m be the expected number of steps required
to move from a state in which v1 contains a+ 1 bodies to a state in which v1 con-
tains a elements. Note that E[Out(a,m)]+ ka,m = E[Out(a+ 1,m)]. Combining this
identity with Equation 15 yields

E[Out(a,m)] = 1+
a
m

E[Out(a− 1,m)]+
m− a

m
(E[Out(a,m)]+ ka,m). (18)

Combining the E[Out(a,m)] terms and multiplying by m/a gives

E[Out(a,m)] =
m
a
+E[Out(a− 1,m)]+

m− a
a

ka,m. (19)

Separating E[Out(a,m)] into E[Out(a−1,m)]+ka−1,m and subtracting E[Out(a−
1,m)] from both sides yields

ka−1,m =
m
a
+

m− a
a

ka,m. (20)

Since (m−a)/a≥ 1 when a≤m/2, the value of ka,m grows as a becomes smaller
when a ≤ m/2. Due to the left term on the right side of Equation 20, we know that
k�m/2�,m ≥ 2. Therefore,

k0,m ≥ 2
�m/2��
a=1

m− a
a

= 2
(m− 1)!
�m

2 �!�m
2 �!

. (21)

We can use the version of Stirling’s approximation found in [12] to bound the
factorials. For even m, this becomes

k0,m ≥ 2
m

√
2πm(m

e )
me

1
12m+1

πm( m
2e )

me
1

3m

=
2m+ 3

2

√
πm3e

9m+1
3m(12m+1)

. (22)

For odd m, the equation becomes

k0,m ≥ 4
m+ 1

�
2π(m− 1)(m−1

e )m−1e
1

12m−11

π(m− 1)(m−1
2e )m−1e

1
3m−3

=
2m+ 3

2�
π(m− 1)(m+ 1)e

9m−8
(12m−11)(3m−3)

.

(23)
The two inequalities are almost the same, but the Equation 23 is smaller for

m > 1. ��
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9 Conclusion and future work

This paper has presented a necessary and sufficient condition for determining the
distribution of a number of moving bodies in an environment made of regions sep-
arated by sensor beams. Additionally, this paper has determined bounds on the ex-
pected number of sensor observations required to determine this distribution under
the exponential random movement model and shown how these bounds can be used
to estimate the total number of moving bodies when this number is not known in
advance.

One goal should be to expand the results of Theorems 6 and 9 to graphs that
are not edge weight balanced. One possible way that this could be accomplished
for Theorem 6 would be to “reset” all the moving bodies into the vertex with the
smallest sum of outgoing edges, as this would most likely be the hardest vertex to
empty. One could also develop specific bounds for other types of graphs and start-
ing distributions. Theorems 10 and 12 imply that for a single graph, one starting
distribution causes convergence to the counting information state in an expected
polynomial number of stages, and a different starting distribution causes conver-
gence in an expected exponential number of stages (note that the graph in Theorem
10 can be treated as C2 if all the bodies start in one component). It would be useful
to know under which conditions this polynomial-to-exponential “phase transition”
occurs.

Exploiting the cover time of random walks is one technique that could be used
to produce improved bounds. The cover time of a vertex v ∈ V (G) for some graph
G is the expected number of steps required for a body initially placed in v that is
taking a random walk to reach every vertex in G. The cover time of the graph is the
maximum cover time over all possible starting vertices. For a strongly connected
graph G containing m bodies, one could make a secondary graph H with a vertex
set consisting of the length m strings with characters drawn from V (G). Each vertex
of H is an string that contains the location of each of the m bodies in G. For v 1,v2 ∈
V (H), an edge exists between them if their corresponding strings of the vertices
differ in exactly one character, and the differing character in v 1 has an edge in G to
the differing character from v2. A random walk by a single body in H can represent
the movements of all the bodies in G. Since G is strongly connected, so is H. Since
for each vertex in G, there exists a vertex in H that represents a state in which G is
empty. Therefore, the expected time to convergence to a counting information state
in G is less than the expected cover time of H.

For a simple example, consider the case where G =C2. In this case, H is the m-
dimension hypercube. In order for each vertex of G to empty out, two vertices of H
have to be reached. One is the vertex of H representing the state where all bodies are
in v1 ∈V (G), and the other is the vertex of H representing the state where all bodies
are in v2 ∈V (G). Since H is an regular graph with 2m vertices, [8] implies that the
expected cover time is at most 4m+1/2 steps. Therefore, E[Con(C2,d)] ≤ 4m+1/2.
This is not as good of a bound as the ones presented earlier in the paper, but further
refinement of the technique may yield useful results.
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