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Abstract—How many different classes of partially distinguish-
able landmarks are needed to ensure that a robot can always see
a landmark without simultaneously seeing two of the same class?
To study this, we introduce thechromatic art gallery problem. A
guard set S ⊂ P is a set of points in a polygonP such that for
all p ∈ P , there exists ans ∈ S such that s and p are mutually
visible. Suppose that two members of a finite guard setS ⊂ P
must be given different colors if their visible regions overlap.
What is the minimum number of colors required to color any
guard set (not necessarily a minimal guard set) of a polygon
P? We call this number, χG(P ), the chromatic guard number
of P . We believe this problem has never been examined before,
and it has potential applications to robotics, surveillance, sensor
networks, and other areas. We show that for any spiral polygon
Pspi, χG(Pspi) ≤ 2, and for any staircase polygon (strictly
monotone orthogonal polygon)Psta, χG(Psta) ≤ 3. For lower
bounds, we construct a polygon with4k vertices that requires k
colors. We also show that for any positive integerk, there exists a
monotone polygonMk with 3k2 vertices such thatχG(Mk) ≥ k,
and for any odd integer k, there exists an orthogonal polygon
Rk with 4k2 + 10k + 10 vertices such thatχG(Rk) ≥ k.

I. I NTRODUCTION

Suppose a robot is navigating a region populated with
colored landmarks. The robot is equipped with the following
primitives: drive toward the landmark, drive away from the
landmark, and drive in circles around the landmark. If this
robot were in an area where two landmarks with the same
color are visible, then its motion primitives may become
unpredictable. If it can see two different green landmarks,then
what is it to do when told “drive toward the green landmark”?
This raises a natural question: How many classes of partially
distinguishable guards are required to guard a given area (see
Figure 1)? Equivalently, how many classes of landmarks are
required so that the robot can always see a landmark (so that
it can always navigate), but never two landmarks of the same
class (so that it does not get confused)? In this paper, we tryto
answer this question for bounded simply connected polygonal
areas. We assume that a robot cannot see a given landmark if
the polygon boundary is in the way.

There are many reasons why one would want to minimize
the number of landmark classes. Adding more classes of
landmarks means that a more sophisticated sensing system
is required. An eight color camera is easier to construct than
a 32-bit color camera. Even if a camera can see thousands
or millions of colors, differences in light or shade could still
make classification difficult. This was demonstrated in [12],
in which more powerful cameras (in terms of number of
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Fig. 1. [left] Three guards in a polygonP . The yellow region denotes the
points that are visible from boths1 and s2, so s1 and s2 must be given
different colors. The purple region is the area visible onlyfrom s1, and the
green region is the area visible only froms2. The blue region is visible from
s3. Since this region does not intersect with the points visible froms1 or s2,
the guards3 may be colored the same ass1 or s2. [right] A guard placement
and coloring that uses only two colors. This is the minimum number of colors
required for this polygon.

colors) were found to be worse for human iris identification
than weaker cameras, as the more powerful cameras would
see false differences in different pictures of the same eye.
Minimizing the number of landmark classes could also make
it so that only the “most different” classes are used, increasing
the separation between sensor data points and decreasing
classification errors. The problem of discovering the most
distinctive visual landmarks for mobile robot navigation was
addressed in [11]. Other research in which landmarks are
specifically selected to reduce classification error include [20]
and [24].

This is closely related to the original art gallery problem.
It is impossible to list all of the significant results about art
galleries in general polygons, but some of the most important
works include results on tight bounds [2], [4] and exterior
visibility [5]. Orthogonal art galleries are one of the most
commonly studied variants, with notable results includingtight
bounds on the number of required guards [8], [15], [21] and
bounds on the number of guards required for exterior visibility
problems [7]. Results specific to monotone polygons include
bounds on edge guards [1] and approximation algorithms with
bounds independent of the number of polygon vertices [18].
Most of the important results from before 1987 are discussed
in [22]. We prove lower bounds on the chromatic art gallery
number for general, monotone, and orthogonal polygons.

We also prove upper bounds on the chromatic art gallery



number for spiral polygons and staircase polygons (also known
as strictly monotone orthogonal polygons). Spiral polygons
are a heavily studied area in visibility. Special results for this
class of polygons are available for the watchman route problem
[19], the weakly cooperative guard problem [14], the visibility
graph recognition problem [3], point visibility isomorphisms
[16], and triangulation [25]. However, we are most interested
in spiral polygons because of their use as building blocks. An
algorithm for decomposing general polygons into a minimum
number of spiral polygons was described in [10]. We choose
to focus on spiral polygons because we think they could be
a useful component in solving the chromatic guard number
problem for general polygons, and staircase polygons for their
similar potential as pieces of orthogonal polygons.

Section II contains the formal definition of the problem.
Section III contains proofs for lower bounds on the chromatic
guard number for general polygons, monotone polygons, and
orthogonal polygons. Section IV contains upper bounds on
the chromatic guard number for spiral polygons and staircase
polygons. Section V discusses directions of future research.

II. PROBLEM DEFINITION

Let a polygonP be a closed, simply connected, polygonal
subset ofR2 with boundary∂P . A point p ∈ P is visible
from point q ∈ P if the closed segmentpq is a subset of
P . The visibility polygonV (p) of a point p ∈ P is defined
as V (p) = {q ∈ P | q is visible from p}. Let a guard set
S be a finite set of points inP such that

⋃

s∈S V (s) = P .
The members of a guard set are referred to asguards. A pair
of guardss, t ∈ S is called conflicting if V (s) ∩ V (t) 6=
∅. Let C(S) be the minimum number of colors required to
color a guard setS such that no two conflicting guards are
assigned the same color. LetT (P ) be the set of all guard
sets ofP . Let χG(P ) = minS∈T (P ) C(S). We call this value
χG(P ) the chromatic guard numberof the polygonP . Note
that the number of guards used can be as high or low as is
convenient. We want to minimize the number of colors used,
not the number of guards.

The notion of conflict can be phrased in terms oflink
distance. The link distance between two pointsp, q ∈ P
(denotedLD(p, q)) is the minimum number of line segments
required to connectp and q via a polygonal path. Each line
segment must be a subset ofP .

Theorem 1. Two guardss1, s2 ∈ P conflict if and only if
LD(s1, s2) ≤ 2.

Proof: If LD(s1, s2) = 1, then s1 and s2 are mutually
visible, and obviously conflict.

If LD(s1, s2) = 2, then there exists a pointr ∈ P , such
thats1r, rs2 ⊆ P . Sinces1r ⊆ P , r ∈ V (s1). Sincers2 ⊆ P ,
r ∈ V (s2). Becauser is in V (s1) andV (s2), the intersection
of V (s1) andV (s2) is non-empty; therefores1 ands2 conflict.

If s1 ands2 conflict, then letr be a point in the intersection
of V (s1) andV (s2). Sincer ∈ V (s1), s1r ⊆ P . Sincer ∈
V (s2), rs2 ⊆ P . Becauses1r, rs2 ⊆ P , LD(s1, s2) ≤ 2.

III. L OWER BOUNDS ON THE CHROMATIC GUARD NUMBER

A finite set of lines in the plane is asimple arrangement
if each pair of lines intersects and no three lines intersectat
the same point. A simple arrangement of lines can be used
to construct a polygon that requires a linear number of colors
relative to the number of vertices in the polygon.

Theorem 2. For every integerk ≥ 3, there exists a polygon
Pk with 4k vertices such thatχG(Pk) ≥ k.

Proof: The polygon Pk will be constructed fromk
gadgets, each consisting of four line segments. Each gadget
consists of a nearly triangular well and a line that connectsto
the next gadget. The goal is to arrangek of these gadgets so
that every pair of guards conflict, and each guard can guard
no more than two convex vertices.

Let T be a simple arrangement ofk lines. Now, make
a closed convexk-gon bounding boxB that contains each
intersection among the lines ofT in its interior, and has a
boundary vertex on each line ofT . Place the well of a very
thin gadget at each of the boundary vertices (see Figure 2). Let
p1 andp2 be two convex vertices in the same well associated
with line T1. Note that, as the opening of the well is made
smaller, and the width of the segment joiningp1 and p2 is
made narrower, the distance between a pointq ∈ V (p1) ∩ B
and the closest point toq in T1∩B becomes arbitrarily small.
Note also that any guard placed in the well must lie on a
line segmentℓ ⊂ V (p1) ∪ V (p2) that extends fromp1p2 to a
polygon edge connecting two reflex vertices on the other side
of Pk.

Since each guard in a well has anℓ segment that is
arbitrarily close to its line from the arrangement, and all the
lines in the arrangement intersect, theℓ segments from two
guards in different wells must intersect (assuming that the
wells are thin and the well openings are narrow enough),
so two guards in different wells must conflict. A guards
located inB must conflict with every guard, as everyℓ segment
intersectsB, andB ⊂ V (s). Therefore, all guards placed in
Pk will pairwise conflict. SincePk has 2k convex vertices,
and each guard can see at most two convex vertices,k guards
are required; henceχG(Pk) ≥ k. SincePk is made fromk
gadgets, each of which has four edges,Pk has4k vertices.

A polygon P is monotoneif there exists a lineL such
that the intersection ofP and any line perpendicular to
L has at most one connected component. A polygonP is
strictly monotoneif there exists a lineL such that any line
perpendicular toL intersects∂P at two or fewer points.

Theorem 3. For every integerk ≥ 3, there exists a strictly
monotone polygonMk with 3k2 vertices such thatχG(Mk) ≥
k.

Proof: The polygonMk is a variant of the standard
“comb” used to show the occasional necessity of⌊n/3⌋ guards
in the standard art gallery problem [2]. The vertex list ofMk

is [(1, 2k − 2), (2, 2k − 3), (4, 2k − 3), (5, 2k − 2), (6, 2k −
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Fig. 2. [left] A gadget. The pointsp1 and p2 are the convex vertices. For a guard to seep1 and p2 simultaneously, it would have to be placed in the
triangular region (bounded on top by the dotted lines) that does not extend far out of the well. [middle left] Two gadgets. The cones show the region outside
of the well where a convex vertex is visible. The yellow regions are where a single guard can see two convex vertices. Thereis no place where a guard can
see three convex vertices. [middle right] As the well openingis made smaller and the well is made more narrow,V (p1) ∪ V (p2) (purple region) becomes
more narrow and anyℓ line segments (colored in red) from a guard in the well must get closer to arrangement lineT1 (colored in blue). [right] A polygon
Pk for k = 5. The blue lines represent a simple arrangementT of k = 5 lines. Each line in the arrangement is associated with the well of a gadget.
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Fig. 3. [top] The polygonMk for k = 3. The guards1 is a body guard,
and the guards2 is an notch guard. [middle] Notch guards must be placed at
leastk = 3 notches away from each other to avoid conflicts. Guardss1 and
s2 conflict asV (s1) ∩ V (s2) = q, but s3, which is k = 3 notches away
from s1 does not conflict withs1. A body guards4 can only guardk = 3
notches by itself. Portions of the rightmost four notches visible from s4 are
highlighted in purple. [bottom] A guard placement that requires three colors.

3) . . . (4k2− 4, 2k− 3), (4k2− 3, 2k− 2), (4k2− 2, 0), (0, 0)].
This polygon has3k2 vertices, and it consists of a trapezoidal
region (thebody region) that hask2 notchesattached to the
shorter edge. Call the vertices with ay coordinate of2k − 2
apex points. Note that each notch has a unique apex point. A
guard with coordinates(x, y) will be referred to as anotch
guard if y > 2k − 3 and will be referred to as abody guard
if y ≤ 2k − 3 (see Figure 3).

Each body guard can guard up tok distinct notches.
However, since the visibility polygon of a body guard includes
the entire body region, and every guard’s visibility polygon
intersects the body region, a body guard will conflict with
every other guard in the polygon. Letmbody be the number
of body guards used in a guard set ofMk.

Each notch guard can guard only one notch. However, two
notch guards will not conflict if they are placed far enough
away from each other. Since the bottom edge ofMk has ay
coordinate of0, two notch guards are forced to conflict only
if the distance between the apex points of their corresponding
notches is4k−4 or less. Let a set ofk notches beconsecutive
if the maximum distance between the apex points of any two
notches in the set is4k − 4. Let mnotch be the maximum
number of notch guards in any consecutive set ofk notches
in Mk.

Suppose the polygonMk has a guard setS assigned to
it that requires onlyχG(Mk) colors. Considerk consecutive
notches inMk that containmnotch notch guards in total. All
of these notch guards will conflict with each other, and all of
these notch guards will conflict with all of the body guards.
Therefore,χG(Mk) ≥ mnotch +mbody. Now, note that each
body guard can guard at mostk notches. Since there arek2

notches, by the pigeonhole principle, notch guards can guard
at mostkmnotch notches (see Figure 3). Since each notch must
be guarded,kmnotch+kmbody ≥ k2, somnotch+mbody ≥ k.
ThereforeχG(Mk) ≥ mnotch +mbody ≥ k.

A polygonP is orthogonal(sometimes calledrectilinear in
other publications) if all of its angles are right angles.

Theorem 4. For every odd integerk ≥ 3, there exists a
monotone orthogonal polygonRk with 4k2+10k+10 vertices
such thatχG(Rk) ≥ k.

Proof: We begin by introducing a family of orthogonal
polygons with two parameters,m, i ∈ Z

+. The vertex list for
polygonRm,i is [(0, 0), (0, i+1), (1, i+1), (1, i), (2, i), (2, i+
1), (3, i+1), (3, i), . . . , (2m−2, i), (2m−2, i+1), (2m−1, i+
1), (2m−1, 0)]. This takes the form of a(2m−1)×i rectangle
with m 1× 1-sized notches along the top edge (see Figure 4).
Any guard inRm,i with a y-coordinate greater thani will
be called anotch guard. All other guards will be calledbody
guards.

There arem notches. Each notch has a ceiling of length
1. These ceilings are a subset of the polygon, so they must
be covered. A body guard can cover the most ceiling if it is
placed on the bottom of the polygon. LetC(s) be the total
length of ceiling that a body guards can see. Suppose a body
guards is placed on the bottom of the polygon underneath the
left edge of a notch (thus maximizing the amount of ceiling it
can see to its right). This guard can see all of the notch that
it is underneath. It can see a length of(i − 2)/i of the next
notch to the right,(i− 4)/i of the notch after that, and so on
(see Figure 4). Therefore,s can see

∑i/2
j=0 2j/i ceiling to its

right. We double this term to account for the ceiling it might
be able to see on its left to get
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Fig. 4. [top] The polygonRm,i for i = 7 andm = 7. Each notch has a
height and width of1. The bottom edge is highlighted in red, and the ceiling
edges are highlighted in green. The dotted red line represents the extra length
i that we can assume exists on either side of the bottom edge for the purposes
of placing nonconflicting notch guards. [bottom] A guards is placed on the
bottom edge of the polygon is a position where the total length of ceiling
edge inV (s) to the right ofs is maximized. The visibility polygonV (s) is
highlighted in yellow. The number above each notch shows how much ceiling
edge length in that notch is inV (s).

C(s) ≤
i/2
∑

j=0

4j

i
=

4

i
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) (

i
2 + 1

)

2

)

=
i

2
+ 1. (1)

Suppose that a certain color is used instead for notch guards.
Each notch guard can guard a ceiling of length1. However,
while each body guard must have its own unique color, a single
color can be assigned to multiple notch guards. So, given the
dimensions of the polygon, how many notch guards can share
one color? Note that the visibility polygon of a notch guard
must include a portion of the bottom edge of the polygon.
Since two notch guards that use the same color have visibility
polygons that do not intersect, this space along the bottom
edge of the polygon is a resource that can only support a finite
number of notch guards of the same color. The bottom edge
of the polygon has length2m−1. However, to account for the
fact that the bottom of the visibility polygons of notches close
to the edge could have an additional length of up toi if the
convex portion of the polygon were wider, we can treat the
bottom edge as though it has length2m+ 2i− 1 (see Figure
5). It is clear that placing a notch guards along the ceiling of
a notch minimizes the length of the bottom edge insideV (s).
It is also clear that for any pointp on the bottom edge of the
polygon, there exists a point on the ceiling of a notch that
is visible fromp. Suppose a guards is placed on the ceiling
of a notch at a length0 ≤ t ≤ 1 from the left vertex of the
ceiling. Since the height of the notch is1, the leftmost point
of V (s) on the bottom edge will extend a distanceti past the
x-coordinate of the leftmost point in the notch. Similarly, the
rightmost point ofV (s) will extend a distance of(1− t)i past
thex-coordinate of the rightmost point in the notch (see Figure
5). Therefore, the length of the bottom edge insideV (s) is
i+ 1 (we have to include the length of1 directly underneath
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Fig. 5. The polygonRm,i for i = 5 andm = 7. Three guards have been
placed on ceiling edges and their visibility polygons are highlighted in yellow.
The striped pink regions are portions of the visibility polygons that have been
cut off by the left or right side ofRm,i. Note that if the length of the bottom
edge ofRm,i extended an extrai in both directions, then the length of the
bottom edge of each visibility polygon would bei+1 = 6, regardless of the
guard’s location on its notch’s ceiling.

the notch). This means that the amount of the bottom edge
seen by a single notch guard placed on a ceiling is not related
to its exact location within that ceiling. Since no two notch
guards with the same color can have any of their visibility
polygons overlap, a single color can be used to guard at most
(2m+ 2i− 1)/(i+ 1) notches.

Choose any guard set forRm,i. Let xnotch be the number of
colors used in the notch guards, and letxbody be the number
of colors used in the body guards. Since each guard must be
a notch or a body guard, we get

xnotch + xbody = χG(Rm,i). (2)

Since each color used for a body guard can guard at most
i/2+1 length of ceiling, and each color used for notch guards
can guard at most(2i+2m−1)/(i+1) length of ceiling, and
there ism total length of ceiling, we get

(

2i+ 2m− 1

i+ 1

)

xnotch +

(

i

2
+ 1

)

xbody ≥ m. (3)

Let k = (i−3)/2 and let polygonRk be the polygon where
m = (i2 − i)/4 + 1 with i ∈ {x ∈ Z

+|x ≡ 1 mod 4}. By
the quadratic formula (and keeping in mind thati must be
positive), this implies thati = 1/2 +

√

4m− (15/4). This
turns Equation 3 into

(

i

2
+ 1

)

(xnotch + xbody) ≥
i2 − i

4
+ 1. (4)

The term(i2−i)/4+1 is equal to((i2+2i)−(3i+6)+10)/4;
hence Equation 4 can be rewritten as

χG(Rk) = xnotch + xbody ≥ i

2
− 3

2
+

10

2i+ 4
≥ i− 3

2
= k.

(5)
The polygon therefore requires at least(i − 3)/2 =

√

m− (15/16) − (5/4) colors. The polygonRk has 4m
vertices andχG(Rk) ≥

√

m− (15/16) − (5/4). Sincek =
(i− 3)/2 =

√

m− (15/16)− (5/4), Rk has4k2 + 10k+ 10
vertices and requiresk colors. The integerk must be odd to
ensure that the number of vertices is divisible by4.



While these constructions do not work when the desired
number of required colors is1 or 2, it is trivially easy to
construct such polygons, asχG(P ) ≥ 1 for all polygons, and
χG(P ) ≥ 2 for all non-star-shaped polygons.

IV. U PPER BOUNDS ON THE CHROMATIC GUARD NUMBER

One could just give every guard its own color. Any polygon
P with n vertices can be guarded by⌊n/3⌋ guards (the art
gallery theorem [2]), soχG(P ) ≤ ⌊n/3⌋. However, this bound
is unsatisfying, because colors can often be reused. There
exist polygons with an arbitrarily high number of vertices that
require only two colors. We prove bounds better than⌊n/3⌋
for two categories of polygons.

A. Spiral polygons

A chain is a series of points[p1, p2, . . . , pn] along with line
segments connecting consecutive points. Asubchainis a chain
that forms part of the boundary of a polygon. The pointsp1
andpn are calledendpoints, and all other points areinternal
vertices. A convex subchainis a subchain where all the internal
vertices have an internal angle of less thanπ radians. Areflex
subchainis a subchain where all the internal vertices have an
internal angle of greater thanπ radians. Note that convex and
reflex subchains can trivially consist of a single line segment
(if there are no internal vertices). A spiral polygon is a polygon
with exactly one maximal reflex subchain (all reflex subchains
of the spiral polygon must be contained within the maximal
reflex subchain).

Theorem 5. For any spiral polygonP , χG(P ) ≤ 2.

Proof: The spiral polygon consists of two subchains, a
reflex subchain, and a convex subchain. Letvs andvt be the
endpoints of the reflex subchain. Without loss of generality,
assume that the path along the convex subchain fromvs to vt
runs clockwise. The guards will all be placed along the edges
of the convex subchain.

Call the nth guard placedsn. Places1 at vs. Let pn be
the point most clockwise along the convex subchain that is
visible from sn. Let bn be the most counterclockwise vertex
along the reflex subchain visible fromsn. Let gn be the vertex
immediately clockwise frombn. Let rn be the point on the
convex subchain colinear withgn andbn and visible from both.
Note thatpn andrn define the endpoints of an interval along
the convex subchain. Placesn+1 at a point on this interval
that is not one of the endpoints. Note that this meanssn+1 6∈
V (sn). Terminate when a guard can seevt (see Figure 6).

We can show that this is a guard set for the polygon
by triangulating the polygon using the polygon vertices, the
members ofS, and the pointspi and showing that each
triangle has a member ofS as one of its vertices. Suppose
that the polygon bounded by the edges starting frompn
counterclockwise along the boundary ofP until bn and the
edge betweenpn and bn has already been triangulated such
that each triangle contains a vertex in the set{si|i ≤ n}. We
must show thatsn+1 can guard the subpolygon bordered by
the edges counterclockwise frompn+1 to pn, the edge between

sn+1

bn+1
bn

Fig. 7. A polygon consisting of the edges on the reflex subchain betweenbn
and bn+1 and the edgessn+1bn and sn+1bn+1. Since all the vertices on
the reflex subchain are reflex, this polygon has only one triangulation, where
all triangles havesn+1 as an endpoint.

pn andbn, the vertices counterclockwise frombn to bn+1, and
the edge betweenbn+1 andpn+1 (call this subpolygonPn+1).
If each of these vertices in the subpolygon is visible from
sn+1, then the subpolygon can be triangulated by connecting
each vertex tosn+1, meaning thatsn+1 guards the entire
subpolygon (see Figure 6).

Since sn+1 is placed on the interval in betweenpn and
rn, it must be able to see the entire edge betweengn andbn,
meaning thatbn is visible fromsn+1. By definition, the vertex
bn+1 is visible fromsn+1. Examine the polygon consisting of
the edges along the reflex subchain betweenbn and bn+1,
sn+1bn, andsn+1bn+1. Since all the vertices along the reflex
subchain are reflex, they cannot have edges between each other
in a triangulation, so in any triangulation, they must all be
connected tosn+1 (see Figure 7). By definition, the pointpn+1

is visible fromsn+1. The pointpn is visible tosn+1 because
sn+1 is on the convex subchain interval betweenpn and rn.
If two points on the convex subchain interval betweenpn and
rn are not mutually visible, then there must be a reflex vertex
betweenbn and gn on the reflex subchain, but by definition,
there are no such vertices. Because the vertices in betweenpn
and pn+1 lie on a convex subchain, ifsn+1 can see bothpn
andpn+1, thensn+1 can see all the vertices in between. This
means thatPn+1 can be triangulated with every triangle having
sn+1 as an endpoint, sosn+1 guardsPn+1 (the triangle with
endpointspn+1, bn+1, andsn+1 is degenerate, as those three
points are colinear, but this is not a problem). This technique
still works if sn+1 can seevt (in this case,pn+1 = bn+1 = vt).
This implies inductively thatS is a guard set forP .

Because all the guards are along the convex subchain, if two
guards conflict, their visibility polygons must intersect some-
where along the convex subchain. Also, sincesn 6∈ V (sn+1)
and sn 6∈ V (sn−1), sn+1 cannot conflict withsn−1, or there
would be no room along the convex subchain to placesn.
Therefore, all evenly indexed guards can be colored red, and
all oddly indexed guards can be colored blue, soχG(P ) ≤ 2.

B. Staircase polygons

An alternating subchainis a subchain with at least one
internal vertex, with the first and last internal vertices being
convex, and with consecutive internal vertices alternating
between convex and reflex. Astaircase polygonis an orthog-
onal polygon consisting of two convex vertices,vw and vz,
connected by two alternating subchains. For simplicity, wewill
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Fig. 6. [top left] A spiral polygonP . The convex subchain is highlighted in red, and the reflex subchain is highlighted in blue. [top right] The first guards1
is placed on vertexvs. The pointsp1, b1, g1, andr1 are marked and the interval in whichs2 can be placed is highlighted in green. [bottom left] Recursively
showing that placed guards form a guard set. The subpolygonP1 is assumed to be guarded bys1. The region thats2 is responsible for isP2, bounded by the
reflex subchain betweenb1 andb2, the edge betweenp2 andb2, the convex subchain betweenp2 andp1, and the edge betweenb1 andp1. The subpolygon
P2 has been triangulated, indicating thats2 can guard the whole subpolygon. The triangle with endpointsp2, b2, ands2 is degenerate, as those three points
are colinear. [bottom right] A guard placement and 2-coloring.
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Fig. 8. [left] A staircase polygonP with verticesvw andvz identified. The
lower subchain is highlighted in red, and the upper subchainis highlighted
in blue. [middle] The guards1 is placed on the neighbor ofvw on the lower
subchain. The guards2 is placed on the rightmost convex vertex inV (s1).
[right] A guard placement and coloring forP that uses only three colors.

assume without loss of generality that orthogonal polygons
are always oriented such that each edge is either vertical or
horizontal, and thatvw is the top left vertex, and thatvz
is the bottom right vertex. Put the polygon on a coordinate
plane withvw at the(0, 0) coordinate, let right be the positive
x direction, and let up be the positivey direction. The
term “staircase polygon” is a synonym for strictly monotone
orthogonal polygon (mentioned in [7], which solved the prison
yard problem for this class of polygons). Note that the bound
from Theorem 4 is for monotone orthogonal polygons, not
strictly monotone orthogonal polygons.

Theorem 6. For any staircase polygonP , χG(P ) ≤ 3.

Proof: Due to our assumptions about the orientation of
the polygonP , one of the alternating subchains is going to
be above the other one. Call the higher subchain theupper
subchainand call the other subchain thelower subchain. Place
a guards1 on the neighbor ofvw along the lower subchain.
If guard si has been placed on the lower subchain, then place
guard si+1 on the right-most convex vertex on the upper
subchain that is contained inV (si). If guardsi has been placed
on the upper subchain, then place guardsi+1 on the right-most
convex vertex on the lower subchain that is contained inV (si).
Stop placing guards when a guard can seevz, and letm be
the number of guards placed (see Figure 8).

First, it must be shown thatsi and si+2 are not placed on

the same vertex. Suppose without loss of generality thatsi is
on the lower subchain. Note that the rightmost convex vertex
on the lower subchain inV (si+1) must also be the lowest
convex vertex on the lower subchain inV (si+1). Note also
that a ray extended downward fromsi+1 must intersect the
horizontal edge incident tosi+2 (otherwisesi+2 would not
be the rightmost convex vertex on the lower subchain). If this
is the same horizontal edge that is incident tosi, then the
point where the ray intersects the horizontal edge incidentto
si must be a convex vertex (call itvf ). Since the convex vertex
vf neighbors the convex vertexvi along a horizontal edge, and
sincevf is to the right ofvi, vf must bevz. Therefore,si+2

would only be placed on the same vertex assi if vz is visible
from si+1. Since we stop placing guards once a guard can see
vz, two guards will never be placed on the same vertex.

Next, it must be shown that this is a guard set for the
staircase polygon. Suppose without loss of generality that
guard si is placed on the lower subchain. Assume that the
set [s1, s2 . . . si] forms a guard set for the subpolygon that
lies above the guardsi (call this subpolygonPi). We must
show that the set[s1, s2 . . . si+1] forms a guard set for the
subpolygon that lies to the left of guardsi+1 (call this
subpolygonPi+1). Let pi+1 be the point where a ray extended
downward fromsi+1 intersects the lower subchain. Note that
each vertex on the lower subchain betweensi and pi+1 is
visible fromsi+1. We have to show thatsi+1 guardsPi+1\Pi.
Let vri be the reflex vertex to the right ofsi on the lower
subchain. LetQi+1 be the subpolygon belowsi+1 and to the
left of si+1 (see Figure 9). Clearly,Qi+1 ⊇ Pi+1\Pi (assi+1

cannot be lower thansi). Note that every vertex ofQi+1 that
is not connected tosi+1 by an edge ofQi+1 is on the lower
subchain. For any given vertexv in Qi+1 that is not connected
to si+1 by an edge ofQi+1, all edges ofQi+1 not incident
to si+1 that lie abovev must also lie to the left ofv, and all
edges ofQi+1 not incident tosi+1 that lie to the right ofv
must also lie belowv. Sincesi+1 is never lower thanv, and
never to the right ofv, every vertexv of Qi+1 must be visible
from si+1. This means that one could triangulateQi+1 such
that each triangle hassi+1 as one of its corners. Therefore,
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Fig. 9. [top left] A polygonP with a guard placement. [top middle] The
regionP1 that s1 is responsible for guarding. [top right] The regionP2 that
s1 ands2 are reponsible for guarding. [bottom left] The regionP2\P1 thats2
is responsible for guarding. [bottom middle] The regionQ2, which consists
of the portion ofP below and to the left ofs2. This region is a superset
of P2\P1. [bottom right] A triangulation ofQ2 where all triangles have a
vertex at the location ofs2, showing thats2 guardsQ2.

the guardsi+1 can guardQi+1 by itself. Therefore, the set
[s1, s2 . . . sm] forms a guard set forP .

Finally, it must be shown that the guard set[s1, s2 . . . sm]
can be colored with three colors. Suppose guardsi is placed on
the lower chain. Letyi be they-coordinate of the lowest point
visible from si. Note that, becausesi is on a convex right-
angle vertex on the lower subchain,V (si) is bordered on the
bottom by a horizontal line at the same height as the horizontal
edge incident tosi; thereforeyi is just they-coordinate ofsi.
Let yi+3 be they coordinate of the highest point inV (si+3).
Becausesi+3 is on a convex right-angle vertex on the upper
subchain,V (si+3) is bordered on top by a horizontal line at the
same height as the horizontal edge incident tosi+3; therefore
yi+3 is just they-coordinate ofsi+3. Now, we must show that
yi > yi+3. In the portion of the proof that showed that each
guard is placed on a unique vertex, we demonstrated that the
y-coordinate ofsi+1 (call it yi+1) has to be higher than the
y-coordinate ofsi+3. If yi ≤ yi+3, then yi ≤ yi+3 < yi+1.
However, this is impossible, becausesi+1 was placed on the
rightmost (and thus, lowest) vertex on the upper chain that
was inV (si). Therefore,yi > yi+3. Since the highest point in
V (si+3) is lower than the lowest point inV (si), si andsi+3

cannot conflict (see Figure 10).
Sincesi and si+3 do not conflict, we can color all guards

with an index of 0 mod 3 with green, all guards with an
index of 1 mod 3 with red, and all guards with an index of
2 mod 3 with blue. ThereforeχG(P ) ≤ 3.

We have assumed throughout this proof that guardsi was
placed on the lower subchain. However, the arguments made
above still apply ifsi was placed on the upper subchain (reflect
the polygon over they = −x line).

V (s4)

V (s1)

s3

s2

s4 s4

s5

s1 s1

Fig. 10. [left] A staircase polygonP with a guard placement. [right] The
regionsV (s1) andV (s4) are shown. Note that the lowest point inV (s1) is
higher than the highest point inV (s4), as the horizontal line incident tos1’s
vertex is higher than the horizontal line incident tos4’s vertex.

V. CONCLUSION

We have introduced the chromatic art gallery problem,
which asks for the minimum number of landmark colors
required to ensure that a robot travelling in a given polygon
can always see at least one landmark, but never simultaneously
sees two of the same color. We have constructed a polygon
with n vertices that requiresΩ(n) colors, and we have
constructed monotone and orthogonal polygons that require
Ω(

√
n) colors. We have also found constant upper bounds

on the chromatic guard number for the spiral and staircase
polygons. These two families of polygons may be useful as
building blocks for polygons in more general families.

The results from Section III seem to indicate that the
environments that have the highest chromatic guard number
have a large central convex region with several smaller niches
attached to it. Therefore, if one were designing an environment
where robots were to navigate via visual landmarks, it may be
advantageous to design the environment without such a region,
as that region would require more landmark classes and would
potentially be more susceptible to classification errors.

Some directions of future research would be finding bounds
for other families of polygons, and finding tight bounds for
the general, monotone, and orthogonal polygons. Visibility
in curvilinear bounded regions has also been researched [9].
Allowing polygons with holes is another possibility, as is
placing further restrictions on the placement of guards, perhaps
forcing the guards to be strongly cooperative [23] or weakly
cooperative [17].

The problem could also be attacked from a visibility graph
context. The structure of standard visibility graphs for general
polygons is still not completely understood, but [6] gives
four necessary conditions for visibility graphs. It is likely that
analogues of these four conditions could be made for “2-link”
visibility.

There are also algorithmic questions. While finding the
minimum number of art gallery guards for a given polygon
is NP-complete [13], it is not necessary to find the minimum
number of art gallery guards to find the minimum number of
colors required for a polygon (see Figure 11). There is also the
possiblity that the graphs representing the conflict relationships
between guards (each graph vertex is a guard, and two vertices
are connected by an edge if the corresponding guards conflict)
is an easy family of graphs to color. However, these graphs



Fig. 11. [left] A polygonP with a minimal guard set of three guards. [right]
A guard placement and coloring forP that uses the minimum two colors, but
four guards. This demonstrates that a guard placement that uses the minimum
number of colors does not need to use the minimum number of guards.

are not generally perfect graphs, and there are relatively few
non-perfect families of graphs that are easy to color.

Finally, for practical robotics purposes, it would be useful
to make a more realistic model of when guards conflict. For
example, it may be interesting to research the case where the
robot has limited vision, so that two guards sufficiently far
from each other will not conflict even if there is no obstacle
between them.
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