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Abstract

We present an algorithm that computes the complete set
of Pareto-optimal coordination strategies for two trans-
lating polygonal robots in the plane. A collision-free
acyclic roadmap of piecewise-linear paths is given on
which the two robots move. The robots have a maximum
speed and are capable of instantly switching between any
two arbitrary speeds. Each robot would like to minimize
its travel time independently. The Pareto-optimal solu-
tions are the ones for which there exist no solutions that
are better for both robots. The algorithm computes exact
solutions in time O(mn2 log n), in which m is the num-
ber of paths in the roadmap, n is the number of coordi-
nation space vertices. An implementation with computed
examples is presented.

1 Introduction

Collision-free coordination of multiple bodies is a fun-
damental problem that has received significant atten-
tion over the last couple of decades. Popular exam-
ples of multibody systems include reconfigurable robots
[7, 11, 14, 25] and autonomous guided vehicles (AGVs).
In this paper, we address cases in which each body is
treated as a separate robot and a roadmap (network of
paths) has been computed for each robot. Each roadmap
avoids collisions with workspace obstacles, but as robots
travel along their respective roadmaps, collisions may oc-
cur. The task is to schedule the motions of the robots in
a way that avoids collisions between robots while mini-
mizing the time taken to reach goals.

Previous approaches to multiple-robot motion plan-
ning are often categorized as centralized or decoupled.
A centralized approach typically constructs a path in a
composite configuration space, which is formed by the
Cartesian product of the configuration spaces of the in-
dividual robots (e.g., [2, 3, 21]). A decoupled approach
typically generates paths for each robot independently,
and then considers the interactions between the robots
(e.g., [1, 5, 9, 19]). In [4, 6, 18, 22] robot paths are in-

dependently determined, and a coordination diagram is
used to plan a collision-free trajectory along the paths.
In [15, 24], an independent roadmap is computed for each
robot, and coordination occurs on the Cartesian product
of the roadmap path domains. The suitability of one ap-
proach over the other is usually determined by the trade-
off between computational complexity associated with a
given problem, and the amount of completeness that is
lost. In some applications, such as the coordination of
AGVs, the roadmap might represent all allowable mobil-
ity for each robot.

Suppose that all paths in a roadmap are parame-
terized with constant speed, and each robot is capa-
ble switching instantaneously between being at rest and
moving at some fixed speed (obviously, this assumes
transients are negligible, which is only true in some ap-
plications). What is a reasonable notion of optimality
in this case? Minimizing the average time robots take
to reach their goal? Minimizing the time that the last
robot takes? Optimal coordination using such scalar cri-
teria has been considered long ago in [13, 17, 23]. The
problem with scalarization is that it eliminates many in-
teresting coordination strategies, possibly even neglect-
ing optimality for some robots [16].

We are interested instead in finding all Pareto-optimal
[20] coordination strategies by treating coordination as a
multiobjective optimization problem. Each robot has an
independent criterion, which leads to a vector of costs.
Each Pareto-optimal strategy is one for which there ex-
ists no strategy that would be better for all robots. The
approach can be considered as filtering out all of the
motion plans that are not worth considering, and pre-
senting the user with a small set of the best alternatives.
Within this framework additional criteria, such as prior-
ity or the amount of sacrifice one robot makes, can be
applied to automatically select a particular motion plan.
If the same tasks are repeated and priorities change, then
one only needs to select an alternative minimal plan, as
opposed to re-exploring the entire space of motion strate-
gies.



In this paper, we introduce an exact algorithm for
finding all Pareto-optimal coordination strategies for two
polygonal robots, each translating along a fixed roadmap
of paths. In [16], an approximate algorithm was pre-
sented for any number of robots and path types by de-
veloping a Dijkstra-like algorithm that finds all Pareto-
optimal solutions. To the best of our knowledge, up to
now there have been no exact algorithms for computing
Pareto-optimal coordination strategies.

2 Problem Formulation

Suppose we have two polygonal robots R1 and R2.
For brevity, let i = 1, 2 throughout the following sections.
We assumeRi only translates in the plane. Therefore the
configuration space of Ri is R2. We also assume that we
are given a fixed roadmap M on which Ri moves. The
roadmapM specifies a connection graph and a collection
of continuous piecewise-linear paths associated with its
edges in R2. More precisely, M = (G, γ), in which the
graph G consists of a finite number of 0-dimensional ver-
tices V and 1-dimensional edges E assembled as follows.
Each edge e is homeomorphic to the closed interval [0, 1]
attached to V along its boundary points {0} and {1} 1.
We assume G is simple, i.e. has no loops. Note that G
need not necessarily be connected, which can be used to
represent the case where each robot has its own roadmap.

In the definition of roadmap M, γ : G → R2 is a
continuous map such that for each edge e ∈ E , γ|e : G →
R2 is a piecewise-linear path in the plane. The length
of each such piecewise-linear path gives a measure of the
length of the corresponding edge in G. Note that G in
this manner becomes a metric space with metric d which
conforms to the meaning of length in the plane.

We are also given an initial and a goal configuration

Cinit
i , Cgoal

i ∈ G for robotRi. Now the problem is to give
an algorithm to find all Pareto-optimal coordinations for
the two robots R1 and R2 moving on G from the initial
configuration Cinit

1 and Cinit
2 to the goal configuration

Cgoal
1 and Cgoal

2 respectively. In the following, we define
the meaning of all those terms.

A coordination is a continuous, and piecewise smooth
path in G × G which avoids collision between robots.
Precisely, a continuous path C : [0, 1] → G × G from

(Cinit
1 , Cinit

2 ) to (Cgoal
1 , Cgoal

2 ) is a coordination for R1

and R2 if for all t ∈ [0, 1], robot R1 at γ(C1(t)) does
not collide with robot R2 at γ(C2(t)), in which C(t) =
(C1(t), C2(t)). We use the term coordination for both
the above function and its image wherever there are no
ambiguities.

Finally, we are given a cost functional J that sepa-
rately measures the time that each robot takes to reach
its goal, under a particular coordination. Thus, it spec-
ifies a partial order on the set of all coordinations C.

1We place upon G the topology given by the endpoint identifi-

cations.

Each minimal element in this partial order is called a
Pareto-optimal coordination.

3 Algorithm Presentation

3.1 Basic concepts

Cost functional As it is stated in Section 2, we have
an explicit cost functional J . Particularly, Ji denotes the
amount of time that it takesRi to reach its goal and stop.
This time depends on the speed of Ri and the length of
its path. We have so far introduced length in Section 2.
Without loss of generality, let us assume that our robots
have a maximum speed of 1. Under this assumption, the
distance function d(x, y) gives the minimum amount of
time that it takes Ri to go from x to y on G.

To specify J , first we define a metric d∞ in G ×
G which gives the minimum amount of time that it
takes to get both R1 and R2 from (x1, x2) to (y1, y2).
It is naturally defined by d∞ : ((x1, x2), (y1, y2)) 7→
max(d(x1, y1), d(x2, y2)). It is easy to verify that d∞

is actually a metric. Second, let L∞ be the functional
that gives the length of every continuous path in G × G
according to d∞.

Now for each coordination C, we specify J = (J1, J2)
in the following three cases:

• Robot R1 reaches its goal sooner than R2. Thus
there is t0 ∈ [0, 1) such that ∀ t0 ≤ t ≤ 1 : C(t) =

(Cgoal
1 , C2(t)) and C2(t0) 6= Cgoal

2 . For the least
such t0 we define J(C) = (L∞(C|[0,t0]),L

∞(C)).

• Robot R2 reaches its goal sooner than R1. Thus
there is t0 ∈ [0, 1) such that ∀ t0 ≤ t ≤ 1 : C(t) =

(C1(t), C
goal
1 ) and C1(t0) 6= Cgoal

1 . For the least
such t0 we define J(C) = (L∞(C),L∞(C|[0,t0])).

• Otherwise, both robots reach their goals simultane-
ously. We define J(C) = (L∞(C),L∞(C)).

Coordination cell Since G consists of 0-dimensional
and 1-dimensional cells, G × G is a cube-complex. In
fact, G × G consists of a number of 2-dimensional cells
appropriately pasted to each other along their boundary
edges and vertices. Each such 2D cell, D = er × es, in
which er, es ⊂ G, can be seen as the coordination cell of
the two robots on the paths γ|er

and γ|es
parametrized

by unit speed. In particular, our coordination cell can
be seen as [0, lr]× [0, ls], in which lk = l(ek) is the length
of ek.

Within each coordination cell, we use the term obsta-
cle region to refer to the set of points corresponding to
positions in which the interiors of R1 and R2 intersect.
The free region is set of points not in the obstacle re-
gion. In Figure 1, we see an example of a coordination
cell and its obstacle region. Notice that our coordina-
tion cell is similar to the coordination diagram of [22],
but since our robots are polygonal and our paths are
piecewise-linear, the obstacle region in our coordination
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Figure 1: A pair of path segments and their coordination
cell.

Figure 2: A coordination cell with three equivalent co-
ordinations.

cell is a collection of polygonal connected components.
If we confine our attention to a single coordination cell
(as we will in Section 3.2), a coordination is essentially
a piecewise-smooth path from (0, 0) to (lr, ls) inside its
free region.

Equivalence and partial order In Figure 2, we see
an example coordination cell with three coordinations
whose L∞ lengths and consequently their J costs are
equal. In general, equality of J cost defines an equiva-
lence relation ∼ on the set of all coordinations C. In fact,
since our optimality criterion is based on the value of J ,
we can consider the set C̃ = C/∼ of equivalence classes
and use term coordination class to refer to one of these
maximal sets of equivalent coordinations.

Now we can define the partial order mentioned in
Section 2 in more detail. Define a relation ≤ on C̃ as
follows: For any two coordination classes [C] and [C ′],
say that [C] ≤ [C ′] if and only if J1(C) ≤ J1(C

′) and
J2(C) ≤ J2(C

′). It is easy to see that the definition is
independent of the choice of representative, so ≤ is well-
defined. Any minimal element in this partial order is a
Pareto-optimal coordination class. The algorithm pro-
posed here computes a representative from each of these
Pareto-optimal coordination classes.

To describe the algorithm, we first describe how to
compute all Pareto-optimal coordinations in the simpler

case of a single coordination cell, then extend the algo-
rithm to the whole G × G which consists of a collection
of such coordination cells.

3.2 Two fixed paths

In this section we describe how to compute all Pareto-
optimal coordinations in a single coordination cell, i.e.
for the two robots on two fixed paths. As it is stated in
Section 3.1, the obstacle (or collision) region of our coor-
dination cell consists of a collection of polygons. Thus,
we may use the terms vertex and edge of the obstacle re-
gion. To present the algorithm, we give some statements
about the properties of Pareto-optimal coordinations.

Lemma 1 For every Pareto-optimal coordination class
[Cop] in a coordination cell [0, lr] × [0, ls] there is a rep-
resentative Ceq ∈ [Cop] such that Ceq is composed of a
finite sequence of linear segments between the vertices of
obstacle region, initial (0, 0) and goal (lr, ls) points, and
in some cases a point on the boundary of the coordination
cell, (t, ls) or (lr, t).

Proof: First, notice that there is an equivalent coordi-
nation to Cop which is piecewise-linear. By an argument
similar to the one in [8], which is essentially based on
shortening, we get the result. As a remark, notice that in
cases where for example robot R1 reaches its goal sooner
than R2, the final segment of each coordination in [Cop]
lies over the boundary of coordination cell and in partic-
ular is of the form (lr, t) − (lr, ls). That is why in some
cases Ceq passes through a point on the boundary which
may neither be an obstacle vertex nor an endpoint. ¤

As a consequence of Lemma 1, it is sufficient to con-
sider only coordinations composed of a sequence of linear
segments between the vertices of obstacle region, initial
and goal points, and in some cases a point on the bound-
ary of coordination cell. We call such Pareto-optimal co-
ordinations visibility Pareto-optimal. The next lemma
explains this naming and characterizes the set of vertices
on the boundary.

Lemma 2 Suppose [Cop] is a visibility Pareto-optimal
coordination class with Cop ∈ [Cop] of the form described
in Lemma 1. Let (t1, t2) denote the last vertex of Cop

which is not on the boundary (that is, that last vertex
such that t1 6= lr and t2 6= ls). There are three cases:

(i) If J1(Cop) < J2(Cop), then the line segment
(t1, t2) − (lr, t2 + lr − t1) is collision free and fur-
thermore, is exactly a segment of Cop.

(ii) If J1(Cop) > J2(Cop), then the line segment
(t1, t2) − (t1 + ls − t2, ls) is collision free and fur-
thermore, is exactly a segment of Cop.

(iii) If J1(Cop) = J2(Cop), then there is at most one

such [Cop] in C̃ and it is represented by the shortest
path on the visibility graph of obstacle vertices and
endpoints.



Proof: In the first two cases, if the line segment is
not collision free, we can always find another coordina-
tion which reduces both J1 and J2 contradicting the op-
timality of Cop. Furthermore, taking the line segment
is the best strategy. In other words, if the line segment
is not part of Cop, we can replace it in and find a bet-
ter coordination. In the third case, it is obvious that
[Cop], if exists, is unique, because for any coordination
[C ′] 6= [Cop] with J1(C

′) = J2(C
′), either [C ′] < [Cop]

or [C ′] > [Cop]. In fact, Cop is the L2-shortest path
from (0, 0) to (lr, ls) in the interior of coordination cell.
In other words, Cop is the shortest path according to
the Euclidean metric. As a remark, notice that an L2-
shortest path is also L∞-shortest but the converse need
not be true. ¤

Corollary 3 The number of Pareto-optimal coordina-
tions is finite.

Note that case (i) of in Lemma 2, (lr, t2 + lr − t1) is
simply the intersection of the line x1 = lr and the line
with slope 1 through (t1, t2). Similar remarks can be
made for cases (ii) and (iii). Intuitively, we can think
of shooting a ray at slope 1 from each obstacle vertex
(t1, t2) and stopping when that ray hits a point with
either x1 = lr or x2 = ls, corresponding respectively
to R1 or R2 reaching its goal. Lemmas 1 and 2 tell
us that every Pareto-optimal coordination class has a
representative that ends with such a slope-1 segment.

Now we are ready to present the algorithm in Figure
3. The function ObstaclePolygons computes the ob-
stacle region polygons. As it is stated in Section 3.1,
the obstacle region is a collection of polygons which can
be computed by collision detection algorithm along each
pair of linear path segments. More precisely, we build
the Minkowski sum of R2 on R1 which is a bigger poly-
gon around R1 representing the position of the center of
R2 while R1 and R2 touch each other. The intersection
points of linear path segments with this polygon gives
the boundary of obstacle region. The visibility graph of
the vertices of obstacle region and endpoints is computed
in VisibilityGraph according to the well-known radial
sweep algorithm in [8]. The function Free checks to see
whether a line segment is contained in the free region of
the coordination cell. This can be performed by simple
geometric tests. The optimal path candidates described
in Lemma 2 are then added to S. Lastly, we notice that
some of the added paths may not be actually optimal.
These are removed in PruneSolutions by simple pair-
wise comparisons.

Theorem 4 The algorithm SingleCellParetoOpti-

malCoord in Figure 3 correctly computes all Pareto-
optimal coordinations of the two robots on two fixed
piecewise-linear paths.

Proof: The result directly follows from Lemma 1 and
Lemma 2. ¤

SingleCellParetoOptimalCoord(er, es,R1,R2)
S ← ∅ 〈〈S is the set of candidate solutions.〉〉
P ← ObstaclePolygons(e1, e2,R1,R2)
V G← VisibilityGraph(P ∪ {(0, 0), (lr, ls})
Dijkstra(V G, (0, 0),L∞)
S ← S ∪ Shortest((lr, ls)

for each vertex v = (x1, x2) of each polygon in P
〈〈Is R1 is nearer the goal than R2?〉〉
if x1 − x2 > lr − ls

q ← (lr, x2 + lr − x1)
if Free(P, v, q) and Free(P, q, (lr, ls))

S → S ∪ {(Shortest(v), q, (lr, ls))}

〈〈Is R2 is nearer the goal than R1?〉〉
if x1 − x2 < lr − ls

q ← (x1 + ls − x2, ls)
if Free(P, v, q) and Free(P, q, (lr, ls))

S → S ∪ {(Shortest(v), q, (lr, ls))}

S → PruneSolutions(S)
return S

Figure 3: The basic algorithm for two fixed paths.

If n denotes the number of obstacle vertices, then Vis-

ibilityGraph takes O(n2 log n) time. Since each of the
other steps can be done in O(n2) time, the time com-
plexity of SingleCellParetoOptimalCoord is also
O(n2 log n).

3.3 Acyclic roadmap

In this section we extend the coordination cell algo-
rithm in Figure 3 to the general case of two robots on
an acyclic roadmap G. The theory developed in [12]
easily shows that if G is acyclic, G × G with L2 met-
ric is non-positively curved (NPC) and consequently it
has unique Euclidean geodesics. For some applications
of NPC spaces and Gromov’s hyperbolic group theory,
see [10, 11]. These results imply:

Proposition 5 Assume G×G is equipped with L2 metric
in which G is an acyclic graph. Note that G need not
necessarily be connected. Between any two points x, y ∈
G ×G there is exactly one geodesic connecting x and y if
they are in the same connected component.

This nice property makes G × G similar to the plane,
because geodesics in G×G play the role of lines in plane.
In fact, geodesics inside a coordination cell coincide with
the usual Euclidean lines. Thus, we have the following
lemmas similar to the ones in Section 3.2. From now on,
we assume G is acyclic. Note that since in each coordi-
nation cell the obstacle region is polygonal, the obstacle
region in G × G is also polygonal.



Lemma 6 For every Pareto-optimal coordination class

[Cop] in G from (Cinit
1 , Cinit

2 ) to (Cgoal
1 , Cgoal

2 ) there is a
representative Ceq ∈ [Cop] such that Ceq is composed of a
finite sequence of geodesic segments between the vertices
of obstacle region, initial and goal points, and in some

cases a point on the boundary, (x,Cgoal
2 ) or (Cgoal

1 , x).

Proof: Very similar to the proof of Lemma 1. ¤

As before, call Ceq a visibility Pareto-optimal coordi-
nation.

Lemma 7 Assume [Cop] is a Pareto-optimal coordina-
tion class. and Cop is of the form described in Lemma 6
Once again, there are three cases:

(i) If J1(Cop) < J2(Cop), then the geodesic segment

A to (Cgoal
1 , y) with equal progression for R1 and

R2 is collision free and furthermore, is exactly a
segment of Cop.

(ii) If J1(Cop) > J2(Cop), then the geodesic segment

A to (y, Cgoal
2 ) with equal progression for R1 and

R2 is collision free and furthermore, is exactly a
segment of Cop.

(iii) If J1(Cop) = J2(Cop), then there is at most one

such [Cop] in C̃ and it is represented by the shortest
path on the generalized visibility graph of obstacle
vertices and endpoints.

Above, A = (x1, x2) is the last vertex of Cop which is not

on the boundary, i.e. x1 6= Cgoal
1 and x2 6= Cgoal

2 .

Proof: Very similar to the proof of Lemma 2. ¤

Corollary 8 The number of Pareto-optimal coordina-
tions for two polygonal robots on a piecewise-linear
acyclic roadmapM is finite.

In ParetoOptimalCoord in Figure 4, GenVisi-

bilityGraph is a generalization of visibility graph al-
gorithm in [8]. More precisely, we do a radial sweeping
algorithm. This can be done because the radial geodesics
are unique. To sweep about vertex v, we just sort all the
obstacle vertices throughout the cell complex in their
geodesic angle order. We extend the standard algorithm
by maintaining a separate balanced binary tree for each
2-cell in G×G intersected by the sweep ray. Edges in each
tree remain ordered according to their distance from v.
To check whether a geodesic is collision free, we check
collision for all the nearest edges given by our tree data
structure in those cells that are traversed by the geodesic.
The remainder of the algorithm is essentially unchanged
from SingleCellParetoOptimalCoord.

Theorem 9 The algorithm ParetoOptimalCoord

in Figure 4 correctly computes all Pareto-optimal coor-
dinations of the two robots onM from C init to Cgoal.

ParetoOptimalCoord(M,R1,R2, C
init, Cgoal)

S ← ∅ 〈〈S is the set of candidate solutions.〉〉
P ← ∅
for each pair of edges ei, ej ∈ G

P ← P ∪ObstaclePolygons(ei, ej ,R1,R2)
V G← GenVisibilityGraph(P ∪ {C init, Cgoal})
Dijkstra(V G,Cinit,L∞)
S ← S ∪ Shortest(Cgoal)

for each vertex v = (x1, x2) of each polygon in P
〈〈Is R1 is nearer to Cgoal than R2?〉〉

if d(x1, C
goal
1 ) < d(x2, C

goal
2 )

q ← (Cgoal
1 , x2 + δx1)

if Free(P, v, q) and Free(P, q, Cgoal)
S → S ∪ {(Shortest(v), q, Cgoal))}

〈〈Is R2 is nearer to Cgoal than R1?〉〉

if d(x1, C
goal
1 ) > d(x2, C

goal
2 )

q ← (x1 + δx2, C
goal
2 )

if Free(P, v, q) and Free(P, q, Cgoal)
S → S ∪ {(Shortest(v), q, Cgoal))}

S → PruneSolutions(S)
return S

Figure 4: The algorithm for finding all Pareto-optimal
coordinations of two robots on an acyclic piecewise-linear
roadmap.

Proof: The result directly follows from Lemma 6 and
Lemma 7. ¤

Complexity Let m denote the number of edges inM
and let n denote total number of obstacle vertices. Since
each geodesic passes through at most 2m cells, in com-
puting the visibility graph, we perform O(mn2) balanced
binary tree operations, each taking O(log n) time. The
visibility graph therefore requires O(mn2 log n) time to
compute. Both Dijkstra’s algorithm and the pruning of
S take O(n2) time. Finally, notice that the number of
Pareto-optimal coordinations is less than or equal to the
total number of obstacle vertices plus two. Thus, the
complexity of algorithm output is O(n). Hence, the to-
tal complexity of our algorithm is O(mn2 log n).

4 Experimental Results

We have implemented a simplified version of the de-
scribed algorithm using naive data structures and algo-
rithms in several places. An implementation more faith-
ful to the description in Section 3.3 can be expected to
perform better than the present implementation. The
run times below are for C++ compiled under Linux and
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(a) (b)

Figure 5: (a) A coordination problem on a roadmap with
7 edges. (b) A subset of G × G for this problem.

J

(8.9,14.8)

(9.3,14.3)

(14.4,13.7)

(15.1,8.7)

Figure 6: The four Pareto-optimal solutions for the prob-
lem in Figure 5.

executed on 2.5GHz processor.

Figure 5 shows an example coordination problem on
a connected roadmap with 7 edges. Each robot is shown
in its initial state and the goal is for the robots to switch
places with one another. For this problem G × G con-
tains 31 obstacle polygons totalling 174 obstacle vertices.
The complete set of 4 Pareto-optimal coordinations il-
lustrated in Figure 6 took appoximately 0.2 seconds to
compute.

As a second example, consider the star graph Sn with
vertex set {v1, . . . , vn} and edge set {(v1, vi) : 2 ≤ i ≤ n}.
Coordination on this family of graphs is unusual because
because every cell of G ×G has a non-empty obstacle re-
gion. In Figure 7, R1 and R2 navigate on an embedding
of S16. The obstacle region has 152 = 225 obstacles with
933 vertices in total. The two Pareto-optimal solutions
are shown in Figure 8. Our implementation took 25 sec-
onds to solve this problem.
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Figure 7: (a) A coordination problem on the star graph
S16. (b) A subset of G × G for this problem.

J

(7.7,11.2)

(10.6,7.6)

Figure 8: The two Pareto-optimal solutions for the prob-
lem in Figure 7.

5 Conclusion and Future Work

In this paper, we presented an algorithm to compute
all Pareto-optimal coordinations of two polygonal trans-
lating robots, which have a maximum speed and are
capable of instantly switching between any two speeds
bounded by the maximum speed, on an acyclic roadmap
of piecewise-linear paths in the plane. We showed that
the algorithm works correctly and showed that its com-
plexity is O(mn2 log n), in which m is the number of
edges of roadmap and n is the total number of obstacle
vertices.

However, notice that instead of assuming the robots
are translating polygons on a piecewise-linear roadmap,
we may assume that the configuration space of each
robot while moving on the roadmap is G, the underlying
acyclic graph of the roadmap, and the obstacle regions
in G × G are polygonal. In that case, exactly the same
algorithm can be applied to find all Pareto-optimal co-
ordinations.

More generally, even in cases where the obstacle re-
gions are not polygonal but we can compute bitangents
and consequently the generalized visibility graph, we
may trivially modify the algorithm presented in this pa-
per to compute all Pareto-optimal coordinations of such
robots. In this regard, for example in case of car-like mo-



bile robots on a network of SA paths (see [22]), we may
think of computing bitangents of the obstacle region in
G × G to compute the generalized visibility graph. We
can then find all Pareto-optimal coordinations.

As a future work, we may think of solving the prob-
lem for two robots on a graph which is not necessarily
acyclic. Notice that if G is a simple 2-cycle, G × G is
homeomorphic to a torus. This is a simple example of
the complicated topological spaces we may have for G×G
if G is cyclic.

Finally, we may think of solving the problem for
n robots on a roadmap. In that case, we have to
find Pareto-optimal collision free coordinations in the n-
dimensional cube complex Gn = G × G × · · · × G. Notice
that since the collision of any two robots is considered
a failure of the whole configuration, the obstacle regions
in each n-dimensional cell of Gn are cylindrical. This
property may be exploited to solve the problem.
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