Archives of Control Sciences
Volume 11(XLVII), 2001
No. 34, pages 51-78

RRT-Based Trajectory Design for Autonomous
Automobiles and Spacecraft

PENG CHENG, ZUOJUN SHEN and STEVEN M. LAVALLE

This paper considers the design of open loop control laws for nonlinear systems that are
subject to nonconvex state space constraints. The focus is on finding feasible trajectories for two
challenging sets of nonlinear systems: 1) the determination of automobile trajectories through
obstacle courses; 2) the design of re-entry trajectories for a reusable launch vehicle model based
on the NASA X33 prototype. Our algorithms are based on Rapidly-exploring Random Trees
(RRTs) that incrementally explore the state space while satisfying both the global constraints
imposed by obstacles and velocity bounds and differential constraints imposed by the equations
of motion. The method is particularly suited for high-dimensional problems in which classi-
cal numerical approaches such as dynamic programming cannot be applied in practice. Our
algorithms for trajectory design have been implemented and evaluated on several challenging
examples, which are presented in the paper.

Key words: trajectory planning, motion planning, nonlinear systems, robotics, algorithms

1. Introduction

The design of feasible open-loop trajectories for nonlinear systems that have compli-
cated state space constraints is a challenging task. Even without state space constraints,
it is already very challenging to design feasible trajectories for nonlinear systems. The
consideration of state space constraints combines the complexity of both classical mo-
tion planning from robotics with the challenges of nonlinear system control. If algo-
rithms can be designed that are able to efficiently find and optimize such trajectories for
broad classes of problems, many application areas would be greatly impacted, includ-
ing robotics, aeronautics, and automotive design. The successful development of such

P. Cheng is with the Dept. of Computer Science, 1304 W. Springfield Ave., University of Illinois,
Urbana, IL, 61801, USA. e-mail: pchengl @cs.uiuc.edu. Z. Shen is with the Dept. of Aerospace Engineer-
ing and Engineering Mechanics, 2271 Howe Hall, Iowa State University, Ames, IA 50011, USA. e-mail:
zjshen@iastate.edu. S. M. LaValle is with the Dept. of Computer Science, 1304 W. Springfield Ave., Uni-
versity of Illinois, Urbana, IL, 61801, USA. e-mail: lavalle @cs.uiuc.edu

This work was funded in part by NSF CAREER Award IRI-9875304 (LaValle). We thank Jim Bernard
for many helpful discussions on vehicle dynamics, and his suggestions of models. We thank Ping Lu for
his suggestions regarding the modeling of the X-33. We thank Francesco Bullo for helpful discussions
regarding trajectory optimization.

52 P. CHENG, Z. SHEN, S.M. LAVALLE

algorithms will most likely depend on a culmination of ideas from both the algorithmic
motion planning and nonlinear systems communities.

The primary interest in the motion planning community has been to compute colli-
sion free paths in the presence of complicated constraints on the configuration space of
one or more movable bodies (while ignoring differential motion constraints). It is widely
known that the class of problems is NP-hard [47], which has caused the focus of research
in this area to move from exact, complete algorithms to randomized (or Monte-Carlo)
algorithms that can solve many challenging high-dimensional problems efficiently at the
expense of completeness. Within the past decade, randomized versions of earlier ideas
were developed. The classic notion of a roadmap [11,30,43], is a network of collision-
free paths that captures the configuration-space topology, and is generated by preprocess-
ing the configuration space independently of any initial-goal query. This evolved into a
Monte-Carlo variation termed a probabilistic roadmap (PRM) [25], which is formed by
selecting numerous configurations at random, and generating a network of paths by at-
tempting to connect nearby points. In contrast to roadmaps, classical incremental search
ideas are based heavily on a particular initial-goal query, and include methods such as
dynamic programming, A* search, or bidirectional search. These evolved into random-
ized approaches such as the randomized potential field approach [4], Ariadne’s clew
algorithm [39], the planner in [23]!, and Rapidly-exploring Random Trees (RRTs) [28].

Once differential constraints are introduced, a challenging problem emerges that
involves both nonlinear control and traditional path planning issues. This problem is
often referred to as nonholonomic planning [5, 31, 32, 42] or kinodynamic planning
[10, 13-16, 18]. Many of these methods, such as those in [5, 15], follow closely the in-
cremental search paradigm. It is generally more challenging to design a roadmap-based
algorithm due to the increased difficulty of connecting numerous pairs of states in the
presence of differential constraints (often referred to as the steering problem [32]). The
first randomized approach to kinodynamic planning appeared in [34], and was based on
Rapidly-exploring Random Trees [33]. In that paper, RRTs were applied to trajectory
design problems for hovercrafts and rigid spacecrafts that move in a cluttered 2D or 3D
environment. Theoretical performance bounds are presented in [35]. In [19], RRTs were
applied to the design of collision-free trajectories for a helicopter in a cluttered 3D en-
vironment. In [49], RRTs were applied to the design of trajectories for underactuated
vehicles. Recently, the incremental search method in [26] was extended to the case of
kinodynamic planning in time-varying environments.

Section 2 presents a brief formulation of the general problem. Section 3 introduces
RRTs and RRT-based trajectory design methods. Section 4 considers designing trajec-
tories for autonomous automobiles. Section 5 considers designing re-entry trajectories
for a reusable launch vehicle. Section 6 briefly discusses trajectory optimization issues.
Finally, some conclusions are presented in Section 7.

IWe note that the method introduced here is termed a PRM by the authors. Since the method is based on
incremental search, we include it here to help categorize the methods based on their conceptual similarities.

RRT-BASED TRAJECTORY DESIGN 53

2. Problem Description

The class of problems considered in this paper can be formulated in terms of six
components:

1. State Space: A bounded manifold, X C R”
2. Boundary Values: x;,; € X and X, C X

3. Collision Detector: A function, D : X — {true, false}, that determines whether
global constraints are satisfied from state x. This could alternatively be a real-
valued function that indicates distance from the constraint boundary.

4. Inputs: A set, U, which specifies the complete set of controls or actions that can
affect the state.

5. Incremental Simulator: Given the current state, x(¢), and inputs applied over a
time interval, {u(t')|t < ¢ < t+ At}, the incremental simulator yields x(r + Ar).
This usually occurs through numerical integration of a state transition equation,

x= f(x,u).

6. Metric: A real-valued function, p : X x X — [0,), which specifies the distance
between pairs of points in X (however, p is not necessarily symmetric).

Trajectory planning will generally be viewed as a search in a state space, X, for a
control u that brings the system from an initial state, x;,;; to a goal region Xg,,; C X or
goal state xg,, € X. It is assumed that a complicated set of global constraints is imposed
on X, and any solution path must keep the state within this set. A collision detector
reports whether a given state, x, satisfies the global constraints. We generally use the
notation Xy, to refer to the set of all states that satisfy the global constraints. Local,
differential constraints are imposed through the definition of a set of inputs (or controls)
and an incremental simulator. Taken together, these two components specify possible
changes in state. The incremental simulator can be defined by numerical integration
of a state transition equation of the form x = f(x,u), or can simply be achieved by a
simulation software package. Finally, a metric is defined to indicate the closeness of
pairs of points in the state space. This metric will be used in Section 3.1, when the RRT
is introduced.

3. Trajectory Planning Method

Section 3.1 introduces the RRT. Section 3.2 describes how RRTs are used to con-
struct trajectory design algorithms. Section 3.3 summarizes results regarding the analysis
of RRTs.

54 P. CHENG, Z. SHEN, S.M. LAVALLE

BUILD_RRT (x;,,ir)
1 ‘T.init(x,-nit),
2 fork=1toKdo

3 Xrand < RANDOM_STATE();
4 EXTEND(T, Xana);
5 Return T

EXTEND(7,x)
1 Xear < NEAREST_NEIGHBOR (x, T);
2 if NEW _STATE(X, Xnear, Xnew, Unew) then
3 T .add_vertex (x,ew);
4 T .add_edge(Xnear; Xnew, Unew)’

Figure 1. The basic RRT construction algorithm.

Xnew
v, /

o

Xinit

Figure 2. The EXTEND operation.

3.1. Rapidly-exploring Random Trees (RRTs)

The Rapidly-exploring Random Tree (RRT) was introduced in [33] as an explo-
ration algorithm for quickly searching high-dimensional spaces that have both global
constraints (arising from workspace obstacles and velocity bounds) and differential con-
straints (arising from kinematics and dynamics). The key idea is to bias the exploration
toward unexplored portions of the space by randomly sampling points in the state space,
and incrementally “pulling” the search tree toward them.

The basic RRT construction algorithm is given in Figure 1. A simple iteration is per-
formed in which each step attempts to extend the RRT by adding a new vertex that is
biased by a randomly-selected state, x € X. The EXTEND function, illustrated in Fig-
ure 2, selects the nearest vertex already in the RRT to x. The “nearest” vertex is chosen
according to the metric, p. The function NEW_STATE makes a motion toward x by
applying an input # € U for some time increment A¢. This input can be chosen at ran-
dom, or selected by trying all possible inputs and choosing the one that yields a new

RRT-BASED TRAJECTORY DESIGN 55

Figure 3. The RRT rapidly explores in the beginning, before converging to the sampling distribution. Below
each frame, the corresponding Voronoi regions are shown to indicate the exploration bias.

state as close as possible to the sample, x (if U is infinite, then a finite approximation
or analytical technique can be used). NEW_STATE implicitly uses the collision detec-
tion function to determine whether the new state (and all intermediate states) satisfy
the global constraints. For many problems, this can be performed quickly (“almost con-
stant time”) using incremental distance computation algorithms [21,37,41] by storing
the relevant invariants with each of the RRT vertices. If NEW _STATE is successful, the
new state and input are represented in X, and u,,, respectively. The left column of
Figure 3 shows an RRT grown from the center of a square region in the plane. In this
example, there are no differential constraints (motion in any direction is possible from
any point). The incremental construction method biases the RRT to rapidly explore in
the beginning, and then converge to a uniform coverage of the space [35]. Note that the
exploration is naturally biased towards vertices that have larger Voronoi regions. This
causes the exploration to occur mostly on the unexplored portion of the state space.

3.2. Incremental Search Algorithms

Section 3.1 introduced the basic RRT and its exploration properties. Now the focus
is on developing path planners using RRTs. We generally consider the RRT as a building
block that can be used to construct an efficient planner, as opposed to a path planning
algorithm by itself. For example, one might use an RRT to escape local minima in a
randomized potential field path planner. In [50], an RRT was used as the local planner

56 P. CHENG, Z. SHEN, S.M. LAVALLE

for the probabilistic roadmap planner. We present several alternative RRT-based planners
in this section. The recommended choice depends on several factors, such as whether
differential constraints exist, the type of collision detection algorithm, or the efficiency
of nearest neighbor computations.

3.2.1. Single-RRT Planners

In principle, the basic RRT can be used in isolation as a path planner because its
vertices will eventually cover a connected component of Xy.., coming arbitrarily close
to any specified xgo4;. The problem is that without any bias toward the goal, convergence
might be slow. An improved planner, called RRT-GoalBias, can be obtained by replacing
RANDOM_STATE in Figure 2 with a function that tosses a biased coin to determine
what should be returned. If the coin toss yields “heads”, then x4 is returned; otherwise,
a random state is returned. Even with a small probability of returning heads (such as
0.05), RRT-GoalBias usually converges to the goal much faster than the basic RRT. If
too much bias is introduced; however, the planner begins to behave like a randomized
potential field planner that is trapped in a local minimum. An improvement called RRT-
GoalZoom replaces RANDOM_STATE with a decision, based on a biased coin toss, that
chooses a random sample from either a region around the goal or the whole state space.
The size of the region around the goal is controlled by the closest RRT vertex to the
goal at any iteration. The effect is that the focus of samples gradually increases around
the goal as the RRT draws nearer. This planner has performed quite well in practice;
however, it is still possible that performance is degraded due to local minima. In general,
it seems best to replace RANDOM _STATE with a sampling scheme that draws states
from a nonuniform probability density function that has a “gradual” bias toward the
goal. There are still many interesting research issues regarding the problem of sampling.
It might be possible to use some of the sampling methods that were proposed to improve
the performance of probabilistic roadmaps [1, 8].

One more issue to consider is the size of the step that is used for RRT construction.
This could be chosen dynamically during execution on the basis of a distance compu-
tation function that is used for collision detection. If the bodies are far from colliding,
then larger steps can be taken. Aside from following this idea to obtain an incremental
step, how far should the new state, x,,, appear from Xx,,,,? Should we try to connect
Xnear 10 Xrana? Instead of attempting to extend an RRT by an incremental step, EXTEND
can be iterated until the random state or an obstacle is reached, as shown in the CON-
NECT algorithm description in Figure 4. CONNECT can replace EXTEND, yielding
an RRT that grows very quickly, if permitted by collision detection constraints and the
differential constraints. One of the key advantages of the CONNECT function is that
a long path can be constructed with only a single call to the NEAREST_NEIGHBOR
algorithm. This advantage motivates the choice of a greedier algorithm; however, if an
efficient nearest-neighbor algorithm [2, 3,20, 24,27, 40, 44,48, 51] is used, as opposed
to the obvious linear-time method, then it might make sense to be less greedy. After
performing dozens of experiments on a variety of problems, we have found CONNECT
to yield the best performance for holonomic planning problems, and EXTEND seems

RRT-BASED TRAJECTORY DESIGN 57

CONNECT(7,x)

1 repeat

2 S < EXTEND(T,x);
3 until not (S = Advanced)
4 Return S;

Figure 4. The CONNECT function.

RRT_BIDIRECTIONAL (X;nis, Xgoar)
1 Zg.init(Xini); %-init(xgoal);
2 fork=1toKdo
3 Xrand < RANDOM_STATE();
4 if not (EXTEND(‘Z,, X,qnq) =Trapped) then
5 if (EXTEND(Zp, Xpew) =Reached) then
6 Return PATH(Z;,T);
7 SWAP(Z,, T;);
8 Return Failure

Figure 5. A bidirectional RRT-based planner.

to be the best for nonholonomic problems. One reason for this difference is that CON-
NECT places more faith in the metric, and for nonholonomic problems it becomes more
challenging to design good metrics.

3.2.2. Bidirectional Planners

Inspired by classical bidirectional search techniques [45], it seems reasonable to ex-
pect that improved performance can be obtained by growing two RRTs, one from x;,;
and the other from xg,,;; a solution is found if the two RRTs meet. For a simple grid
search, it is straightforward to implement a bidirectional search; however, RRT con-
struction must be biased to ensure that the trees meet well before covering the entire
space, and to allow efficient detection of meeting.

Figure 5 shows the RRT_BIDIRECTIONAL algorithm, which may be compared to
the BUILD_RRT algorithm of Figure 1. RRT_BIDIRECTIONAL divides the computa-
tion time between two processes: 1) exploring the state space; 2) trying to grow the trees
into each other. Two trees, ‘7, and 7, are maintained at all times until they become con-
nected and a solution is found. In each iteration, one tree is extended, and an attempt is
made to connect the nearest vertex of the other tree to the new vertex. Then, the roles
are reversed by swapping the two trees. Growth of two RRTs was also proposed in [34]
for kinodynamic planning; however, in each iteration both trees were incrementally ex-
tended toward a random state. The current algorithm attempts to grow the trees into each
other half of the time, which has been found to yield much better performance.

58 P. CHENG, Z. SHEN, S.M. LAVALLE

Several variations of the above planner can also be considered. Either occurrence of
EXTEND may be replaced by CONNECT in RRT_BIDIRECTIONAL. Each replace-
ment makes the operation more aggressive. If the EXTEND in Line 4 is replaced with
CONNECT, then the planner aggressively explores the state space, with the same trade-
offs that existed for the single-RRT planner. If the EXTEND in Line 5 is replaced with
CONNECT, the planner aggressively attempts to connect the two trees in each iteration.
This particular variant was very successful at solving holonomic planning problems.
For convenience, we refer to this variant as RRT-ExtCon, and the original bidirectional
algorithm as RRT-ExtExt. Among the variants discussed thus far, we have found RRT-
ExtCon to be most successful for holonomic planning [28], and RRT-ExtExt to be best
for nonholonomic problems. The most aggressive planner can be constructed by replac-
ing EXTEND with CONNECT in both Lines 4 and 5, to yield RRT-ConCon. We are
currently evaluating the performance of this variant.

Through extensive experimentation over a wide variety of examples, we have con-
cluded that, when applicable, the bidirectional approach is much more efficient than a
single RRT approach. One shortcoming of using the bidirectional approach for nonholo-
nomic and kinodynamic planning problems is the need to make a connection between a
pair of vertices, one from each RRT. For a planning problem that involves reaching a goal
region from an initial state, no connections are necessary using a single-RRT approach.
The gaps between the two trajectories can be closed in practice by applying steering
methods [32], if possible, or classical shooting methods [7], which are often used for
two-point boundary value problems.

3.2.3. Other Approaches

If a dual-tree approach offers advantages over a single tree, then it is natural to ask
whether growing three or more RRTs might be even better. These additional RRTs could
be started at random states. Of course, the connection problem will become more difficult
for nonholonomic problems. Also, as more trees are considered, a complicated decision
problem arises. The computation time must be divided between attempting to explore
the space and attempting to connect RRTs to each other. It is also not clear which con-
nections should be attempted. Many research issues remain in the development of this
and other RRT-based planners.

It is interesting to consider the limiting case in which a new RRT is started for every
random sample, x,4,4. Once the single-vertex RRT is generated, the CONNECT function
from Figure 4 can be applied to every other RRT. To improve performance, one might
only consider connections to vertices that are within a fixed distance of x4y, according
to the metric. If a connection succeeds, then the two RRTs are merged into a single graph.
The resulting algorithm simulates the behavior of the probabilistic roadmap approach to
path planning [25]. Thus, the probabilistic roadmap can be considered as an extreme
version of an RRT-based algorithm in which a maximum number of separate RRTs are
constructed and merged.

RRT-BASED TRAJECTORY DESIGN 59

3.3. Analysis Results

Several analytical properties of RRTs have been established in [35,36]. A summary
of these results is given here. First, consider the case of an RRT in which there are no
differential constraints (i.e., X = u). For simplicity, assume that the planner consists of a
single RRT. The bidirectional planner is only slightly better in terms of the analysis, and
a single RRT is easier to analyze. Furthermore, assume that the step size is large enough
so that the planner always attempts to connect X,,04, t0 X,qnq-

3.3.1. The limiting distribution of vertices

Let Di(x) denote a random variable whose value is the distance of x to the closest
vertex in G, in which k is the number of vertices in an RRT. Let d; denote the value of
Dy. Let € denote the incremental distance traveled in the EXTEND procedure (the RRT
step size).

Theorem 1 Suppose xiniy and xgoq) lie in the same connected component of a nonconvex,
bounded, open, n-dimensional connected component of an n-dimensional state space.
The probability that an RRT constructed from Xiny Will find a path to xgoq approaches
one as the number of RRT vertices approaches infinity.

This establishes probabilistic completeness, as considered in [25], of the basic RRT.

The next step is to characterize the limiting distribution of the RRT vertices. Let
X denote a vector-valued random variable that represents the sampling process used
to construct an RRT. This reflects the distribution of samples that are returned by the
RANDOM _STATE function in the EXTEND algorithm. Usually, X is characterized by
a uniform probability density function over X..; however, we will allow X to be char-
acterized by any smooth probability density function. Let X; denote a vector-valued
random variable that represents the distribution of the RRT vertices.

Theorem 2 X; converges to X in probability.

3.3.2. Convergence for trajectory design

We now consider the more general case. Suppose that motions obtained from the
incremental simulator are locally constrained. For example, they might arise by integrat-
ing X = f(x,u) over some time A¢. Suppose that the number of inputs to the incremental
simulator is finite, At is constant, no two RRT vertices lie within a specified € > 0 of each
other according to p, and that EXTEND chooses the input at random. It may be possi-
ble eventually to remove some of these restrictions; however, we have not yet pursued
this route. Suppose Xy and X, lie in the same connected component of a nonconvex,
bounded, open, n-dimensional connected component of an n-dimensional state space. In
addition, there exists a sequence of inputs, uy, uy, ..., U, that when applied to x;,;, yield
a sequence of states, Xini = X0, X1, X2, - .., Xkt-1 = Xgoal- All Of these states lie in the same
open connected component of X r,,,.

60 P. CHENG, Z. SHEN, S.M. LAVALLE

Let 4 = {Ao,A1,... ,Ar} be a sequence of subsets of X, referred to as an attraction
sequence. Let Ag = {x; }. The remaining sets must be chosen with the following rules.
For each A; in 4, there exists a basin, B; C X such that the following hold:

1. Forall x € A;_1, y € A;, and z € X\ B;, the metric, p, yields p(x,y) < p(x,z).

2. For all x € B;, there exists an m such that the sequence of inputs {uy,u2,... ,un}
selected by the EXTEND algorithm will bring the state into A; C B;.

Finally, it is assumed that Ay = Xg 4.

Each basin B; can intuitively be considered as both a safety zone that ensures an
element of B; will be selected by the nearest neighbor query, and a potential well that
attracts the state into A;. An attraction sequence should be chosen with each A; as large
as possible and with k as small as possible. If the space contains narrow corridors, then
the attraction sequence will be longer and each A; will be smaller. The analysis indicates
that the planning performance will significantly degrade in this case, which is consis-
tent with analysis results obtained for randomized holonomic planners [22]. Note that
for kinodynamic planning, the choice of metric, p, can also greatly affect the attraction
sequence, and ultimately the performance of the algorithm.

Let p be defined as

pP= Inl.in{:u(Ai)/lu(Xfree)}a

which corresponds to a lower bound on the probability that a random state will lie in a
particular A;.
The following theorem characterizes the expected number of iterations.

Theorem 3 If a connection sequence of length k exists, then the expected number of
iterations required to connect Xipjy 10 Xgoq1 is no more than k/ p.

The following theorem establishes that the probability of failure decreases exponen-
tially with the number of iterations.

Theorem 4 If an attraction sequence of length k exists, for a constant d € (0,1], the
probability that the RRT fails to finds a path after n iterations is at most e (n=2k),

The following establishes the probabilistic completeness of the planner.

Theorem S The probability that the RRT initialized at x;,i; will contain xgoq as a vertex
approaches one as the number of vertices approaches infinity.

Although this convergence is probabilistic, we have recently introduced a variant of the
RRT (not considered here) that yields deterministic convergence [12].

RRT-BASED TRAJECTORY DESIGN 61

4. Trajectory Design for Automobiles

Trajectory design for automobiles is an important problem both in robotics and vir-
tual prototyping. In robotics, algorithms are needed that can compute trajectories for
autonomous vehicles in complicated environments. In the automotive industry, simula-
tors are used extensively to evaluate vehicle performance for virtual prototyping. Most
of these simulations involve close interaction between a human driver and a simulation
system. The experiments presented in this section can be considered as a component
that might be used in virtual prototyping of automobile designs. As opposed to requiring
human interaction, the RRT-based planner serves as a kind of “virtual stunt driver” that
attempts to achieve specified conditions, such as attempting to race through an obstacle
course.

4.1. Kinematic nonlinear car models

The differential constraints considered in this section arise purely from kinematic
considerations. Thus, the state space reduces to the configuration space (the set of all
transformations that can be applied to the bodies). Section 4.2 considers a complicated
car with nonlinear dynamics.

We first consider a three-dimensional car model in which the state is (x,y,0) and the
state transition equation is

X scos O
y | =| ssinb |, €))
6 %tane

in which L denotes the distance between the front and rear axles, s denotes the speed,
and @ denotes the steering angle. It is assumed that the steering angle is bounded, |@| <
@nax < 5. The input vector is (s,). If the car travels forward only, we set s = 1, and
obtain the Dubins car [17]. If the car can travel in forward or reverse we allow inputs s =
1 or s = —1, and obtain the Reeds-Shepp car [46]. Figure 6 shows RRTs and computed
paths using a bidirectional RRT planner in a cluttered environment for both the Dubins
and Reeds-Shepp cars. Our algorithms were implemented using GNU C++ and Linux
on a 500Mhz PC. The images in Figures 6.a and 6.c show a two-dimensional projection
of the RRT into the XY plane. Note that the RRT in Figure 6.a contains cusps which
corresponds to reversals, and the RRT in 6.c contains no cusps. Figure 7 shows two
examples that are more challenging. The model in (1) assumes that the steering angle
may change instantaneously, which leads to discontinuous curvature in the path. The
model can be extended to yield a four-dimensional state space, in which each state is
represented as (x,y, @, 0) and the following state transition equation appears:

x scos
y | | ssin®
o |)

8 7tan@

62 P. CHENG, Z. SHEN, S.M. LAVALLE

Figure 6. a) An RRT for the Reeds-Shepp car; b) a computed path using the Reeds-Shepp car; ¢) an RRT
for the Dubins car; d) a computed path for Dubins car.

The new input w represents a change in steering angle. From the results in Figure 7.a-b
it can be observed that the paths are smooth. Figures 7.c-d shows results for a Dubins
car that has an additional restriction: it must always turn left! As shown in Figure 7.d,
RRTs can be used to construct solutions in very complicated environments.

RRT-BASED TRAJECTORY DESIGN 63

Figure 7. a) An RRT for the smooth car; b) a computed path using the smooth car; c) an RRT for the
turn-left-only car; d) a computed path for the turn-left-only car.

Consider constructing a feasible solution to the problem of parking a car that pulls
trailers as considered in [42]:

/ i \ scos 0 \

ssin©
y w
y 3 tan @
L

8

0 5 (ﬂi.;ll cos(8;_1 —ej)) sin(8;—1 — 6;)

64 P. CHENG, Z. SHEN, S.M. LAVALLE

|

o

p

Figure 8. The smooth car pulling three trailers: a) the goal is to move from the upper stall to the lower one;
b) the computed RRTs.

in which 6, is the orientation of the car, 6; is the orientation of the i** trailer, and d;
is the distance from the i trailer wheel axle to the hitch point. Figure 8.a shows an
example that involves three trailers, resulting in a seven-dimensional state space. The
computed RRTs using a bidirectional approach are shown in Figure 8.b. The solution
path is illustrated in Figure 9.

4.2. A complicated nonlinear model

We next consider the more challenging case of trajectory design problems that in-
volve nonlinear vehicle dynamics. The nine-dimensional model used here (and others
we have used in our experiments) are minor variations of the models considered in [6].

4.2.1. Variables and constants

The nine-dimensional state vector is (x,y,r, W, ®,q,V,s,B). The 3D coordinate frame
is designed with the x coordinate increasing from left to right, the y coordinate increasing
from top to bottom, and the z coordinate inward (to form a right-handed coordinate
system). Let B be the steering angle. Let a and b be the distance from the front and
rear axles to the car center, respectively. Let) be the yaw angle of the car. Let s be the
forward speed of the car, and let v be the sideways speed (arising from slipping). Let
r be the angular velocity. Let @ be the roll (which describes the sideways tilting of the
car). Let g be the roll angle rate. Let o ¢ and o, be the slipping angle of the front and rear
wheels, respectively. These are expressed as

v+ ar
s

-B

ar

RRT-BASED TRAJECTORY DESIGN 65

Figure 9. The resulting solution for the seven-dimensional nonholonomic system.

and

Let Cyy and Cq, be the cornering stiffness between the forces along the y axis,
Fyy and F,, respectively, on the front and rear wheels. Under some conditions, it is
possible for the car to slip sideways. If Nyu/2 > Cyrtan(|oy|), the calculated fric-
tion force is less than the maximum possible friction, then Fy; = —Cq 0 ; otherwise,
Fyy = uNySgn(as)(1—xs/2), in which Sgn denotes the sign function, u is a constant,
and xy = Nyu/2Cqtan(|as|). Similarly, if N,u/2 > Cqy,tan(|a,|), then Fy, = —Cq,Q,;
otherwise, Fy, = uN,Sgn(a,)(1 —x,/2), in which x, = Nyu/2Cqy, tan(|a,|). Let M be the
car mass, and let / be the yaw moment of inertia. Let H; be the distance from the joint
connecting the chassis with the car frame (the chassis and frame are flexibly attached to
model a simple suspension system). The constants K, c, and other details are described
an in [6].

4.2.2. Equations of motion
In the equations, let 1 = (—(K — MgH,)9— cq — (Fys + F;,)H) /1. The following
represent the nine equations of motion: X = scos) —vsiny, y = ssin{) +vcosy, i =
(Fyra—Fyb) I, =1, 90=q, §=h,V = (Fyy + F,,) /M — sr — Hyh, § = u1, B = uy.
The inputs are u#1, which is linear acceleration, and u,, which is the rate of change in
the steering angle.

66 P. CHENG, Z. SHEN, S.M. LAVALLE

Figure 11. Fast driving through an obstacle course.

4.2.3. Experiments

Figures 10-11 show three separate experiments that were performed for the car
model using a simple RRT with a goal bias (the goal was chosen with probability 1/20,
instead of a random sample). Figure 10 involves a lane-changing problem, which is re-
ferred to in the automotive industry as the Consumer Union Short Course. The car is
moving at 60 m.p.h. from left to right, and planner generates a steering input that avoids
collision. Figure 11 shows an example in which a car must travel at 108 k.p.h. through an
obstacle course. To further complicate the problem, the load on all four tires was com-
puted using the models in [6], and a state constraint was defined that prevents any tire
from lifting off of the ground. In Figure 12, the car starts at 18 k.p.h., and is requested to
reach a state that causes a tire to lift from the ground. The car executes a spiraling path
to generate sufficient speed, and then turns while going 190 k.p.h. to achieve the goal.
Such a test could be used, for example, in a vehicle safety study.

RRT-BASED TRAJECTORY DESIGN 67

Figure 12. Forcing the tires to lift by accumulating speed.

5. Trajectory Design for a Reusable Launch Vehicle

Autonomous control of spacecraft represents a fundamental challenge in the design
of systems for space flight. One of the current goals in space transportation is to design
a new generation of launch vehicles to dramatically lower the costs of putting payloads
in space. Instead of the complex systems in use today, the emphasis is being placed on
a simple, fully reusable vehicle. Since July 1996, NASA has commissioned Lockheed
Martin Skunk Works to design, build and test the X-33 experimental vehicle, which
is depicted in Figure 13. Recently, the X-33 missions have been canceled; however,
other similar prototypes are being evaluated. The purpose of the vehicle is to serve as a
prototype for demonstrating the feasibility of the new concept. The craft is capable of
reaching speeds beyond Mach 13. A formidable challenge is to design a trajectory that
will guide the X-33 safely to earth. Skilled engineers sometimes spend weeks designing
good trajectories for this system. In this section, we describe our early, but promising
results in the design of trajectories for the X-33.

5.0.4. Variables and constants

Our model is a minor variation of the one presented in [38]. The equations of motion
will be expressed in terms of dimensionless variables. In the basic model there are six
state variables, r,0,@,V,y, and . Let r be the radial distance from the center of the earth
to the flying spacecraft, normalized by the radius of the earth, Ry = 6378km. The longi-
tude and latitude are 8 and @, respectively. Derivatives of these variables will be taken

. _ t _ 2
with respect to dimensionless time T, in which 1= TRogs and go = 9.81m/sec”. Let V be

68

P. CHENG, Z. SHEN, S.M. LAVALLE

X-33 Flight Profiles

B, a0 i

164, 0040 fi

Malmsirom AkKH

Figure 13. The NASA X-33 prototype reusable launch vehicle and possible re-entry profiles.

RRT-BASED TRAJECTORY DESIGN 69

the earth-relative velocity, normalized by 1/Rogo. Let y be the flight path angle measured
from horizon surface downward. Let) be the velocity azimuth angle, measured from
the north in a clockwise direction.

The equations of motions will include the variables D, L, and Q, which are all func-
tions of state. The quantities D and L are aerodynamic accelerations in g’s, which are
expressed as

1 2

L=5pV°sC,)
1 2

D= EpV SCp, 3)

in which S is a constant based on surface area, and Cr, = h;(M,a) and Cp = hy(M,a)
are the lift and drag coefficients, respectively. These are each functions of Mach number,
M, and the angle of attack, a. The quantity p is the air density, which is a function of r.
The quantity o could be pre-scheduled to be a function of M, or o could alternatively be
used as a control variable. For simplicity, we assume it is a function of M. The functions,
hi1 and hy are defined using table lookup and interpolation.

Let Q be the rotation rate of the earth normalized by 1/Rgo. Let 0 be the bank angle,
which can be considered as the principle control input of the re-entry flight (the actual
control surface inputs on the craft are computed in terms of bank angle).

5.0.5. Equations of motion

The dimensionless equations of three dimensional motion over a spherical rotating
earth are:

F=Vsiny (C))
6— Vcosysin)
rcos @

. V cosycos
g Yooty

(6)

V=—-D— (ﬂ) + Q2rcos @(sin ycos — cos ysin gcos) @)

2

L1 5 1Y scosy
y_V{Lcoso+<V —;)(p)+

2QV cos @sin s + Q%rcos @(cos ycos @— sinycos Ysin @) } (8)

70 P. CHENG, Z. SHEN, S.M. LAVALLE

Y= L |Lsino + v cosysintan
V| cosy r Y ?
QZ
—2QV (tanycos Ycos @— sin @) + cosy sinJsin @cos Q| . ©)]

5.0.6. Boundary conditions

Initial state is given by orbit flight conditions. The goal state is termed the TAEM
(Terminal Area Energy Management) point, which is:

r(ty)=rp, O(ty) =0r, @1f) =@ (10)

V) =Ve, Ymin SY(T) < Vmars W(Tp) =Wy an
5.0.7. State constraints

The following constraints define Xy,,,. Although the X-33 is not in “collision” in the
physical sense, failure to satisfy these state-space constraints will result in a collision
that must be reported by the collision detector, as described in Section 2.

Normal load constraint:

|Lcosa + Dsina| < ng,,, (12)
Dynamic pressure constraint:

4 < Gmax (13)

Heat rate constraint:

0 < Onax (14)

Equilibrium glide constraint:

[l—vz] (1> —L<O (15)
r r

Both Q, and g are complicated functions of state. A slice of the resulting constraints
is shown in Figure 14.

5.0.8. Varying models

We have performed experiments with several variations of the model. Each is pro-
gressively more complicated than the previous one, due to a difference in the input.

A The state is (r,0,@,V,y, W), and the input is the bank angle, o.

B The state is (r,0,,V,y,,0), and the input is bank angle velocity, 0.

RRT-BASED TRAJECTORY DESIGN 71

Figure 14. The flight corridor for the X-33 reusable launch vehicle (altitude vs. speed).

Figure 15. Biased sampling along the flight corridor.

Figure 16. Altitude vs. range of the designed trajectory.

C The state is (r,0,@,V,y,W,0,V), and the input is bank angle acceleration, &. The
new state variable is defined as v = G.

Model A allows instantaneous setting of the bank angle, which is unrealistic in practice.
Model B allows the bank angle velocity to be changed. Model C is the most realistic
(and most difficult), because only the acceleration of the bank angle is provided by the
input. The limits on the bank angle derivatives are |§| < 10°/sec and |G| < 5°/sec?.

5.0.9. Experiments

In our experiments, we have experienced considerable success design trajectories
using RRT-based planners on Models A and B. In both cases we are able to reach the
TAEM. Currently, we are experimenting with Model C. Figures 14-19 show a com-

72 P. CHENG, Z. SHEN, S.M. LAVALLE

Figure 19. Altitude vs. speed of the designed trajectory.

puted trajectory for Model B. The initial state is r = 1.0086, 8 = 4.257, @ = 0.6400,
V =0.3630, y=0.01098, Y = 0.6138, 0 = 0.0. The goal state is r = 1.0045, 6 = 4.305,
©0=0.6967,V =0.1156, y=—0.1062, =0.7522, 0 = —0.2250. A weighted Euclidean
metric was used in the RRT algorithm. Figure 14 shows the projection of the state space
constraints, plotted as speed vs. range. The state must remain below the jagged upper
curve, and above both of the two lower curves (although the initial state may not initially
be below the upper curve). The initial and goal states are indicated with black dots on
the right and left of the figure, respectively. Figure 15 shows a projection of the ran-
dom samples that were used in the RRT. Instead of using uniform random samples, the
samples were concentrated in an elliptical region based on the flight corridor, with some
bias towards the goal state. Figures 16 - 19 show the paths generated by the RRT. In

RRT-BASED TRAJECTORY DESIGN 73

each case, the initial and goal states are shown as dots. The resulting trajectory comes
sufficiently close to the goal state in each of the perspectives shown.

6. Path Smoothing and Optimization

Although randomization is helpful in the design of feasible trajectories, it often leads
to jagged paths or useless fluctuations in the inputs. This motivates our investigation
into the problem of refining trajectories that are computed by our planning algorithms.
Existing optimization methods, such as first-order gradient descent [9], are usually not
designed to handle complicated, implicit state-space constraints that usually emerge in
motion planning, and also make differentiability assumptions on the model (which would
might prohibit their use in the models used in Sections 4 and 5. A recent survey of
trajectory optimization techniques appears in [7].

We are currently exploring the use of randomization to refine trajectories in the pres-
ence of state space constraints. Some experiments are shown here for the Dubins car.
In this model, there are three state variables (position and orientation). The car moves
forward-only at constant speed; the only input is the steering angle. The maximum steer-
ing angle induces a bound on the curvature of the trajectory.

Two methods are currently being evaluated. For the first method, consider the clas-
sical first-order gradient method presented in [9]. For a given control history, u(t) for
t € [0,27), this iterative method yields a perturbation, u(t) + du(t), that locally (in the
trajectory space) reduces a performance criterion. Eventually, convergence to a locally-
optimal solution is obtained; however, the basic method becomes quickly trapped if ob-
stacles exist. One way to avoid this problem is to iteratively select a segment of the path
at random, perform the classical optimization on it, and then insert the new segment
into the original path. Figure 20.a shows a path computed by an RRT-based planner,
and Figure 20.b shows the resulting path after performing a few hundred iterations of
the classical gradient descent method on randomly-selected path segments. We note that
Dubins’ shortest path curves [17,29] could be used instead of the method in [9]; how-
ever, this approach cannot be generalized to many systems. An alternative method is
to iteratively compute du(z), and use any perturbation u(z) + du(t) that satisfy collision
constraints and reduce the performance criterion. This method can be particularly useful
if the equations of motion are not differentiable or not even explicitly known. Figure
20.c shows an initial path, two intermediate paths, and a final optimized path that was
obtained using random perturbations.

7. Discussion

The experiments illustrate the power of RRTs in the design of trajectories for chal-
lenging nonlinear systems with complicated state-space constraints. However, many

74 P. CHENG, Z. SHEN, S.M. LAVALLE

%xlﬁ

(a) (b)

Figure 20. a) A path computed using an RRT-based planner for a Dubins car; b) a refined path obtained by
iteratively optimizing random intervals using the first-order gradient method; c¢) path refinement by random
perturbations.

challenges remain. One of the greatest difficulties in motion planning of trajectories
is designing a metric that yields good performance. Some recent work on reducing met-
ric sensitivity in RRTs appears in [12]. For some systems is may be possible to utilize
cost-to-go or Lyapunov functions; however, it also appears valuable to develop random-
ized planning methods that have less sensitivity when presented with a poor metric. A
substantial amount of work remains on the problem of trajectory optimization in the
presence of obstacles. The work presented here represents a step in that direction be
considering ways to combine classical optimization methods with modern algorithmic
and planning ideas.

References

[1] N. M. AMATO and Y. WU: A randomized roadmap method for path and manipu-
lation planning. IEEE Int. Conf. Robot. & Autom., (1996), 113-120.

[2] S. ARYA and D. M. MOUNT: Approximate nearest neihgbor queries in fixed
dimensions. ACM-SIAM Sympos. Discrete Algorithms, (1993), 271-280.

[3] S. ARYA, D. M. MOUNT, N. S. NETANYAHU, R. SILVERMAN, and A. Y. WU:
An optimal algorithm for approximate nearest neighbor searching. Journal of the
ACM, 45 (1998), 891-923.

[4] J. BARRAQUAND, B. LANGLOIS, and J. C. LATOMBE: Numerical potential field
techniques for robot path planning. IEEE Trans. Syst., Man, Cybern., 22(2), (1992),
224-241,

RRT-BASED TRAJECTORY DESIGN 75

[5] J. BARRAQUAND and J.-C. LATOMBE: Nonholonomic multibody mobile robots:

Controllability and motion planning in the presence of obstacles. Algorithmica, 10
(1993), 121-155.

[6] J. BERNARD, J. SHANNAN, and M. VANDERPLOEG: Vehicle rollover on smooth

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

surfaces. Proc. SAE Passenger Car Meeting and Exposition, Dearborn, Michigan,
(1989).

J. T. BETTS: Survey of numerical methods for trajectory optimization. J. of Guid-
ance, Control, and Dynamics, 21(2), (1998), 193-207.

V. BOOR, N. H. OVERMARS, and A. F. VAN DER STAPPEN: The gaussian sam-
pling strategy for probabilistic roadmap planners. IEEE Int. Conf. Robot. & Autom.,
(1999), 1018-1023.

A. E. BRYSON and Y.-C. HO: Applied Optimal Control. Hemisphere Publishing
Corp., New York, NY, 1975.

J. CANNY, A. REGE, and J. REIF: An exact algorithm for kinodynamic planning
in the plane. Discrete and Computational Geometry, 6 (1991), 461-484.

J. F. CANNY: The Complexity of Robot Motion Planning. MIT Press, Cambridge,
MA, 1988.

P. CHENG and S. M. LAVALLE: Resolution complete rapidly-exploring random
trees. Submitted to IEEE Int’l Conf. on Robotics and Automation, (2002).

M. CHERIF: Kinodynamic motion planning for all-terrain wheeled vehicles. IEEE
Int. Conf. Robot. & Autom., (1999).

C. CONNOLLY, R. GRUPEN, and K. SOUCCAR: A Hamiltonian framework for
kinodynamic planning. Proc. of the IEEE International Conf. on Robotics and
Automation (ICRA’95), Nagoya, Japan, (1995).

B. DONALD and P. XAVIER: Provably good approximation algorithms for optimal
kinodynamic planning: Robots with decoupled dynamics bounds. Algorithmica,
14(6), (1995), 443—479.

B. R. DONALD, P. G. XAVIER, J. CANNY, and J. REIF: Kinodynamic planning.
Journal of the ACM, 40 (1993), 1048-66.

L. E. DUBINS: On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents. American Journal
of Mathematics, 79 (1957), 497-516.

TH. FRAICHARD and C. LAUGIER: Kinodynamic planning in a structured and
time-varying 2d workspace. IEEE Int. Conf. Robot. & Autom., (1992), 1500-1505.

76

P. CHENG, Z. SHEN, S.M. LAVALLE

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

E. FRAZZOLI, M. A. DAHLEH, and E. FERON: Robust hybrid control for au-
tonomous vehicles motion planning. Technical Report LIDS-P-2468, Labora-
tory for Information and Decision Systems, Massachusetts Institute of Technology,
1999.

J. H. FRIEDMAN, J. L. BENTLEY, and R.A. FINKEL: An algorithm for finding

best matches in logarithmic expected time. ACM Transactions on Mathematical
Software, 3(3), (1977), 209-226.

L. J. GuiBAS, D. Hsu, and L. ZHANG: H-Walk: Hierarchical distance com-
putation for moving convex bodies. Proc. ACM Symposium on Computational
Geometry, (1999), 265-273.

D. Hsu, L. E. KAVRAKI, J.-C. LATOMBE, R. MOTWANTI, and S. SORKIN: On
finding narrow passages with probabilistic roadmap planners. P. Agarwal, editor,
Robotics: The Algorithmic Perspective, A.K. Peters, Wellesley, MA, 1998, 141—
154.

D. Hsu, J.-C. LATOMBE, and R. MOTWANT: Path planning in expansive config-
uration spaces. Int. J. Comput. Geom. & Appl., 4 (1999), 495-512.

P. INDYK and R. MOTWANTI: Approximate nearest neighbors: Towards removing
the curse of dimensionality. Proceedings of the 30th Annual ACM Symposium on
Theory of Computing, (1998), 604—613.

L. E. KAVRAKI, P. SVESTKA, J.-C. LATOMBE, and M. H. OVERMARS: Proba-
bilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE
Trans. Robot. & Autom., 12(4), (1996), 566-580.

R. KINDEL, D. Hsu, J.-C. LATOMBE, and S. Rock: Kinodynamic motion plan-
ning amidst moving obstacles. IEEE Int. Conf. Robot. & Autom., (2000).

J. M. KLEINBERG: Two algorithms for nearest-neighbor search in high dimen-
sions. ACM Symposium on Theory of Computing, (1997), 599-608.

J. J. KUFFNER and S. M. LAVALLE: RRT-connect: An efficient approach to

single-query path planning. Proc. IEEE Int’l Conf. on Robotics and Automation,
(2000), 95-1001.

J.-C. LATOMBE: A fast path planner for a car-like indoor mobile robot. Proc. Am.
Assoc. Artif. Intell., (1991), 659—665.

J.-C. LATOMBE.: Robot Motion Planning. Kluwer Academic Publishers, Boston,
MA, 1991.

J.-P. LAUMOND: Finding collision-free smooth trajectories for a non-holonomic
mobile robot. Proc. Int. Joint Conf. on Artif. Intell., (1987), 1120-1123.

RRT-BASED TRAJECTORY DESIGN 77

[32] J. P. LAUMOND, S. SEKHAVAT, and F. LAMIRAUX: Guidelines in nonholonomic
motion planning for mobile robots. J.-P. Laumond, editor, Robot Motion Plannning
and Control, Springer-Verlag, Berlin, (1998), 1-53.

[33] S. M. LAVALLE: Rapidly-exploring random trees: A new tool for path planning.
TR 98-11, Computer Science Dept., lowa State University, (1998).

[34] S. M. LAVALLE and J. J. KUFFNER: Randomized kinodynamic planning. Proc.
IEEE Int’l Conf. on Robotics and Automation, (1999), 473—479.

[35] S. M. LAVALLE and J. J. KUFFNER: Rapidly-exploring random trees: Progress
and prospects. Workshop on the Algorithmic Foundations of Robotics, (2000).

[36] S. M. LAVALLE and J. J. KUFFNER: Randomized kinodynamic planning. Inter-
national Journal of Robotics Research, 20(5), (2001), 378-400

[37] M. C. LN and J. F. CANNY: Efficient algorithms for incremental distance com-
putation. /EEE Int. Conf. Robot. & Autom., (1991).

[38] P. LU and J. M. HANSON: Entry guidance for the X-33 vehicle. J. Spacecraft and
Rockets, 35(3), (1998), 342-349.

[39] E. MAZER, G. TALBI, J. M. AHUACTZIN, and P. BESSIERE: The Ariadne’s clew
algorithm. Proc. Int. Conf. of Society of Adaptive Behavior, Honolulu, (1992).

[40] G. L. MILLER, S.-H. TENG, W. THURSTON, and S. A. VAVASIS: Separators for
sphere-packings and nearest neighbor graphs. Journal of the ACM, 44(1), (1997),
1-29.

[41] B. MIRTICH: V-Clip: Fast and robust polyhedral collision detection. Technical
Report TR97-05, Mitsubishi Electronics Research Laboratory, 1997.

[42] R. M. MURRAY and S. SASTRY: Nonholonomic motion planning: Steering using
sinusoids. Trans. Automatic Control, 38(5), (1993), 700-716.

[43] C. O’DUNLAING and C. K. YAP: A retraction method for planning the motion of
a disc. Journal of Algorithms, 6 (1982), 104-111.

[44] M. H. OVERMARS and J. VAN LEEUWEN: Dynamic multidimensional data struc-
tures based on Quad- and K-D trees. Acta Informatica, 17 (1982), 267-285.

[45] 1. POHL: Bi-directional and heuristic search in path problems. Technical report,
Stanford Linear Accelerator Center, 1969.

[46] J. A. REEDS and L. A. SHEPP: Optimal paths for a car that goes both forwards
and backwards. Pacific J. Math., 145(2), (1990), 367-393.

78 P. CHENG, Z. SHEN, S.M. LAVALLE

[47] J. H. REIF: Complexity of the mover’s problem and generalizations. Proc. of IEEE
Symp. on Foundat. of Comp. Sci., (1979), 421-427.

[48] R.L SPROULL: Refinements to nearest-neighbor searching in k-dimensional trees.
Algorithmica, 6 (1991), 579-589.

[49] G. J. TOUSSAINT, T. BARAR, and F. BULLO; Motion planning for nonlinear
underactuated vehicles using hinfinity techniques. Coordinated Science Lab, Uni-
versity of Illinois, 2000.

[50] D. VALLEJO, C. JONES, and N. AMATO: An adaptive framework for "single shot"
motion planning. Texas A&M, 1999.

[51] P. N. YIANILOS: Data structures and algorithms for nearest neighbor search in
general metric spaces. ACM-SIAM Symposium on Discrete Algorithms, (1993),
311-321.

