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Abstract

We present our current progress on the design and experimentation with trajectory planning
and optimization algorithms for nonlinear systems that have significant state-space constraints. An
overview of our planning method based on Rapidly-ezploring Random Trees (RRTs) is given. We
show our current planning results for two challenging sets of nonlinear systems: 1) the determination
of automobile trajectories through obstacle courses; 2) the design of re-entry trajectories for a reusable
launch vehicle model based on the NASA X383 prototype. We also briefly describe some early results
on using randomization to optimize trajectories in the presence of state space constraints.

1 Introduction

The design of open loop trajectories for nonlinear systems that have state space constraints is a
challenging task. If algorithms can be designed that are able to efficiently find and optimize such
trajectories for broad classes of problems, many application areas would be greatly impacted, including
robotics, aeronautics, and automotive design. The successful development of such algorithms will most
likely depend on a culmination of ideas from both the algorithmic motion planning and nonlinear systems
communities.

The primary interest in the motion planning community has been to compute collision free paths in
the presence of complicated constraints on the configuration space of one or more controllable bodies
(while ignoring differential motion constraints). It is widely known that the class of problems is NP-hard
[33], which has caused the focus of research in this area to move from exact, complete algorithms to
randomized (or Monte-Carlo) algorithms that can solve many challenging high-dimensional problems
efficiently at the expense of completeness. Within the past decade, randomized versions of earlier ideas
were developed. The classic notion of a readmap [6, 20, 31], is a network of collision-free paths that
captures the configuration-space topology, and is generated by preprocessing the configuration space
independently of any initial-goal query. This evolved into a Monte-Carlo variation termed a probabilistic
roadmap (PRM) [16], which is formed by selecting numerous configurations at random, and generating a
network of paths by attempting to connect nearby points. In contrast to roadmaps, classical incremental
search ideas are based heavily on a particular initial-goal query, and include methods such as dynamic
programming, A* search, or bidirectional search. These evolved into randomized approaches such as
the randomized potential field approach [1], Ariadne’s clew algorithm [28], the planner in [15]', and
Rapidly-exploring Random Trees (RRTSs) [18].

Once differential constraints are introduced, a challenging problem emerges that involves both non-
linear control and traditional path planning issues. This problem is often referred to as nonholonomic
planning [2, 21, 12, 22, 30] or kinodynamic planning [5, 7, 8, 10, 9, 12]. Many of these methods, such
as those in [2, 9], follow closely the incremental search paradigm. It is generally more challenging to
design a roadmap-based algorithm due to the increased difficulty of connecting numerous pairs of states
in the presence of differential constraints (often referred to as the steering problem [22]). The first
randomized approach to kinodynamic planning appeared in [24], and was based on Rapidly-exploring

1We note that the method introduced here is termed a PRM by the authors. Since the method is based on incremental
search, we include it here to help categorize the methods based on their conceptual similarities.



Random Trees [23]. In that paper, RRTs were applied to trajectory design problems for hovercrafts and
rigid spacecrafts that move in a cluttered 2D or 3D environment. Theoretical performance bounds are
presented in [25]. In [13], RRTs were applied to the design of collision-free trajectories for a helicopter in
a cluttered 3D environment. In [34], RRTs were applied to the design of trajectories for underactuated
vehicles. Recently, the incremental search method in [17] was extended to the case of kinodynamic
planning in time-varying environments. Sections 3-5 present the RRT-based trajectory design method
and its application to vehicle dynamics and a reusable launch vehicle.

Given the emerging interest in the use of randomized techniques for trajectory design, a growing
issue is that the quality of the resulting trajectories may be poor due to the large number of random
fluctuations in inputs. This has led us recently to consider the problem of trajectory refinement as a
post-processing step to our planning methods. In Section 6 our current attempts to use randomized
ideas in this domain are briefly presented.

2 Problem Description

The class of problems considered in this paper can be formulated in terms of six components:

1. State Space: A topological space, X
2. Boundary Values: 2, € X and X0 C X

3. Collision Detector: A function, D : X — {true, false}, that determines whether global con-
straints are satisfied from state x. This could alternatively be a real-valued function.

4. Inputs: A set, U, which specifies the complete set of controls or actions that can affect the state.

5. Incremental Simulator: Given the current state, z(t), and inputs applied over a time interval,
{u(')|t <t' <t+ At}, compute z(t + At).

6. Metric: A real-valued function, p : X x X — [0, 00), which specifies the distance between pairs
of points in X (however, p is not necessarily symmetric).

Trajectory planning will generally be viewed as a search in a state space, X, for a control u that brings
the system from an initial state, ni: to a goal region Xg,u C X or goal state x40 € X. It is assumed
that a complicated set of global constraints is imposed on X, and any solution path must keep the state
within this set. A collision detector reports whether a given state, x, satisfies the global constraints.
We generally use the notation Xy, to refer to the set of all states that satisfy the global constraints.
Local, differential constraints are imposed through the definition of a set of inputs (or controls) and an
incremental simulator. Taken together, these two components specify possible changes in state. The
incremental simulator can be defined by numerical integration of a state transition equation of the form
z = f(x,u), or can simply be achieved by a simulation software package. Finally, a metric is defined to
indicate the closeness of pairs of points in the state space. This metric will be used in Section 3, when
the RRT is introduced.

3 Trajectory Planning Method

The Rapidly-exploring Random Tree (RRT) was introduced in [23] as a planning algorithm to quickly
search high-dimensional spaces that have both algebraic constraints (arising from obstacles) and differ-
ential constraints (arising from kinematics and dynamics). The key idea is to bias the exploration toward
unexplored portions of the space by sampling points in the state space, and incrementally “pulling” the
search tree toward them.

The basic RRT construction algorithm is given in Figure 1. A simple iteration is performed in which
each step attempts to extend the RRT by adding a new vertex that is biased by a randomly-selected
state, z € X. The EXTEND function, illustrated in Figure 2, selects the nearest vertex already in the
RRT to . The “nearest” vertex is chosen according to the metric, p. The function NEW_STATE makes
a motion toward x by applying an input v € U for some time increment A¢. This input can be chosen at
random, or selected by trying all possible inputs and choosing the one that yields a new state as close as
possible to the sample, z (if U is infinite, then an approximation or analytical technique can be used).



BUILD RRT(Zinit)
1 T.init(.’l,‘m”);
2 fork=1to K do
3 Trand < RANDOM_STATE();
4 EXTEND(T, Zrand);
5 Return T

EXTEND(T, z)
1  Zpear «— NEAREST_NEIGHBOR(z, T);
2 if NEW_STATE(z, Znear, Tnew, Unew) then
3 T .add_vertex(Tnew);
4 T .add-edge(ZTnear, Tnews Unew );

Figure 1: The basic RRT construction algorithm.

Figure 2: The EXTEND operation.

NEW_STATE implicitly uses the collision detection function to determine whether the new state (and
all intermediate states) satisfy the global constraints. For many problems, this can be performed quickly
(“almost constant time”) using incremental distance computation algorithms [14, 26, 29] by storing the
relevant invariants with each of the RRT vertices. If NEW_STATE is successful, the new state and
input are represented in Tje, and Upew, respectively. The left column of Figure 3 shows an RRT for
a 2D holonomic (no differential constraints) planning problem, constructed in a 2D square space. The
incremental construction method biases the RRT to rapidly explore in the beginning, and then converge
to a uniform coverage of the space [25].

One issue is the size of the step that is used for RRT construction. This could be chosen dynamically
during execution on the basis of a distance computation function that is used for collision detection.
If the bodies are far from colliding, then larger steps can be taken. Aside from following this idea to
obtain an incremental step, how far should the new state, Zne, appear from Z,eq.? Should we try to
CONNECt Tpeqr 1O Trang? Instead of attempting to extend an RRT by an incremental step, EXTEND can
be iterated until the random state is reached or until the collision detector reports a collision. The best
choice often depends on the type of problem.

Figure 3: The RRT rapidly explores in the beginning, before converging to the sampling distribution.



The simple RRT can be used in a variety of ways to form path planning methods [25]. The rec-
ommended choice depends on several factors, such as whether differential constraints exist, the type
of collision detection algorithm, or the efficiency of nearest neighbor computations. By changing the
sampling distribution from uniform a biased RRT can be constructed. For example, an RRT can be
started at ini, and samples from X0 can be occasionally chosen in the place of random samples.
Alternatively, a gradual bias of samples around the goal region can be performed. Inspired by classical
bidirectional search techniques [32], it seems reasonable to expect that improved performance can be
obtained by growing two RRTSs, one from x;,;; and the other from 4045 @ solution is found if the two
RRTs meet. This divides the computation time between two processes: 1) exploring the state space; 2)
trying to grow the trees into each other. Two trees, 7, and 7T, are maintained at all times until they
become connected and a solution is found. In each iteration, one tree is extended, and an attempt is
made to connect the nearest vertex of the other tree to the new vertex. Then, the roles are reversed by
swapping the two trees.

4 Trajectory Design for Automobiles

Simulators are used extensively to evaluate vehicle performance in the automotive industry. Most
of these simulations involve close interaction between a human driver and a simulation system. The
experiments presented in this section can be considered as a component that might be used in virtual
prototyping of automobile designs. As opposed to requiring human interaction, the RRT-based planner
serves as a kind of “virtual stunt driver” that attempts to achieve specified conditions. The nine-
dimensional model used here (and others we have used in our experiments) are minor variations of the
models considered in [3].

Variables and constants The nine-dimensional state vector is (z,y,7,v, ¢,q,v,s,3). The 3D coor-
dinate frame is designed with the z coordinate increasing from left to right, the y coordinate increasing
from top to bottom, and the z coordinate inward (to form a right-handed coordinate system). Let
be the steering angle. Let a and b be the distance from the front and rear axles to the car center,
respectively. Let ¢ be the yaw angle of the car. Let s be the forward speed of the car, and let v be the
sideways speed (arising from slipping). Let r be the angular velocity. Let ¢ be the roll (which describes
the sideways tilting of the car). Let ¢ be the roll angle rate. Let oy and a; be the slipping angle of the
front and rear wheels, respectively. These are expressed as
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Let Cyy and Cy, be the cornering stiffness between the forces along the y axis, Fy; and Fy,, respec-
tively, on the front and rear wheels. Under some conditions, it is possible for the car to slip sideways.
If Npp/2 > Cqop tan(|ayg|), the calculated friction force is less than the maximum possible friction, then
E,; = —Cyyray; otherwise, Fyy = uNySgn(ayr)(l — x5/2), in which Sgn denotes the sign function, p
is a constant, and zy = Nyu/2Cqys tan(|ay|). Similarly, if Nppu/2 > Cyr tan(|a,|), then Fy, = —Cyray;
otherwise, Fy, = pN,Sgn(a;)(1 — z,/2), in which z, = Nfpu/2Cq,tan(|a,|). Let M be the car mass,
and let I be the yaw moment of inertia. Let Ha be the distance from the joint connecting the chassis
with the car frame (the chassis and frame are flexibly attached to model a simple suspension system).
The constants K, ¢, and other details are described an in [3].

Equations of motion In theequations, let h = (—(K—MgH>)¢p—cq—(Fys+Fyr)H2)/I. The following
represent the nine equations of motion: & = scost —vsiney, § = ssiny + vcosy, i = (Fyra — Fy,b) /1,
Y=r, quzq,q':h,1'/:(Fyf+Fyr)/M—sr—H2h,ézul,B:ug.

The inputs are u;, which is linear acceleration, and us, which is the change in the steering angle.

Experiments Figure 4 shows three separate experiments that were performed for the car model using
a simple RRT with a goal bias (the goal was chosen with probability 1/20, instead of a random sample).
Figure 4.a involves a lane-changing problem, which is referred to in the automotive industry as the
Consumer Union Short Course. The car is moving at 60 m.p.h. from left to right, and planner generates
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Figure 5: The NASA X-33 prototype reusable launch vehicle.

a steering input that avoids collision. Figure 4.b shows an example in which a car must travel at 108
k.p.h. through an obstacle course. To further complicate the problem, the load on all four tires was
computed using the models in [3], and a state constraint was defined that prevents any tire from lifting
off of the ground. In Figure 4.c, the car starts at 18 k.p.h., and is requested to reach a state that causes
a tire to lift from the ground. The car executes a spiraling path to generate sufficient speed, and then
turns while going 190 k.p.h. to achieve the goal. Such a test could be used, for example, in a vehicle
safety study.

5 Trajectory Design for a Reusable Launch Vehicle

One of the current goals in space transportation is to design a new generation of launch vehicles
to dramatically lower the costs of putting payloads in space. Instead of the complex systems in use
today, the emphasis is being placed on a simple, fully reusable vehicle. Since July 1996, NASA has
commissioned Lockheed Martin Skunk Works to design, build and test the X-33 experimental vehicle,
which is depicted in Figure 5. The purpose of the vehicle is to serve as a prototype for demonstrating the
feasibility of the new concept. The craft is capable of reaching speeds beyond Mach 13. A formidable
challenge is to design a trajectory that will guide the X-33 safely to earth. Skilled engineers sometimes
spend weeks designing good trajectories for this system. In this section, we describe our early, but
promising results in the design of trajectories for the X-33.

Variables and constants Our model is a minor variation of the one presented in [27]. The equations
of motion will be expressed in terms of dimensionless variables. In the basic model there are six state



variables, r,0,¢,V,~v, and ¥. Let r be the radial distance from the center of the earth to the flying
spacecraft, normalized by the radius of the earth, Ry = 6378km. The longitude and latitude are € and
¢, respectively. Derivatives of these variables will be taken with respect to dimensionless time 7, in
which 7 = \/Rto—go and go = 9.81m/sec®. Let V be the earth-relative velocity, normalized by v/Rogo.
Let « be the flight path angle measured from horizon surface downward. Let 1) be the velocity azimuth
angle, measured from the north in a clockwise direction.

The equations of motions will include the variables D, L, and 2, which are all functions of state.
The quantities D and L are aerodynamic accelerations in g’s, which are expressed as

L= %pV2SCL 1)

1
D = 5pV*SCp, 2)

in which S is a constant based on surface area, and C, = h; (M, «) and Cp = hy(M,a) are the lift and
drag coefficients, respectively. These are each functions of Mach number, M, and the angle of attack,
a. The quantity p is the air density, which is a function of . The quantity a could be pre-scheduled to
be a function of M, or o could alternatively be used as a control variable. For simplicity, we assume it
is a function of M. The functions, h; and hs are defined using table lookup and interpolation.

Let Q be the rotation rate of the earth normalized by v/Rpgo- Let o be the bank angle, which can
be considered as the principle control input of the re-entry flight (the actual control surface inputs on
the craft are computed in terms of bank angle).

Equations of motion The dimensionless equations of three dimensional motion over a spherical
rotating earth are:

r=Vsiny 3)
- Vcosysiny
0=—=— 4
7 COS @ )
. Vcosvycos
r
. sin 7y 9 . .
V=-D- = + Q%r cos ¢(sin -y cos ¢ — cosy sin ¢ cos ) (6)
1 1
= v {Lcosa+ <V2 — ;) (CO:W) +2QVcos¢sin¢+Q2rc0s¢(c05fycos¢—sinfycoswsin@}
(7)
. 1 [Lsine V2 . . a2 .
Y= v [ cos + Tcos*ysmzbtan(ﬁ—2QV(tanfycos¢cos¢—sm¢) + Cosfys1n¢sm¢cos¢] . (8

Boundary conditions Initial state is given by orbit flight conditions. The goal state is termed the
TAEM (Terminal Area Energy Management) point, which is:

r(1s) =ry, 0(7s) = 05, o(17) = b5 9)

V(Tf) = Vf: Ymin < ’Y(Tf) < Ymaz) ¢(Tf) = d}f (10)



State constaints The following constraints define X ¢r... Although the X-33 is not in “collision” in
the physical sense, failure to satisfy these state-space constraints will result in a collision that must be
reported by the collision detector, as described in Section 2.

Normal load constraint:

|Lcosa+ Dsina| < mn, . (11)
Dynamic pressure constraint:
4 < Gmaz (12)
Heat rate constraint: ) )
Qs < Qmaz (13)

Equilibrium glide constraint:

[% — V2] (%) ~-L<0 (14)

Both @, and ¢ are complicated functions of state. A slice of the resulting constraints is shown in
Figure 6.a.

Varying models We have performed experiments with several variations of the model. Each is pro-
gressively more complicated than the previous one, due to a difference in the input.

A The state is (1,6, ¢,V,v,1), and the input is the bank angle, o.
B The state is (r,0,,V,~,v,0), and the input is bank angle velocity, &.

C The state is (r,60,¢,V,v,%,0,v), and the input is bank angle acceleration, 5. The new state
variable is defined as v = ¢5.

Model A allows instantaneous setting of the bank angle, which is unrealistic in practice. Model B allows
the bank angle velocity to be changed. Model C is the most realistic (and most difficult), because only
the acceleration of the bank angle is provided by the input. The limits on the bank angle derivatives
are |o| < 10°/sec and |G| < 5°/sec?.

Experiments In our experiments to date, we have experienced considerable success design trajectories
using RRT-based planners on Models A and B. In both cases we are able to reach the TAEM. Currently,
we are experimenting with Model C. Figure 6 shows a computed trajectory for Model B. The initial
state is r = 1.0086, § = 4.257, ¢ = 0.6400, V = 0.3630, v = 0.01098, ¢ = 0.6138, ¢ = 0.0. The goal
state is r = 1.0045, § = 4.305, ¢ = 0.6967, V = 0.1156, v = —0.1062, ¢» = 0.7522, ¢ = —0.2250. A
weighted Euclidean metric was used in the RRT algorithm. Figure 6.a shows the projection of the state
space constraints, plotted as speed vs. range. The state must remain below the jagged upper curve,
and above both of the two lower curves (although the initial state may not initially be below the upper
curve). The initial and goal states are indicated with black dots on the right and left of the figure,
respectively. Figure 6.b shows a projection of the random samples that were used in the RRT. Instead of
using uniform random samples, the samples were concentrated in an elliptical region based on the flight
corridor, with some bias towards the goal state. Figures 6.c-f show the paths generated by the RRT. In
each case, the initial and goal states are shown as dots. The resulting trajectory comes sufficiently close
to the goal state in each of the perspectives shown.

6 Path Smoothing and Optimization

Although randomization is helpful in the design of feasible trajectories, it often leads to jagged paths
or useless fluctuations in the inputs. This motivations our investigation into the problem of refining
trajectories that are computed by our planning algorithms. Existing optimization methods, such as
first-order gradient descent [4], are usually not designed to handle complicated, implicit state-space
constraints that usually emerge in motion planning, and also make differentiability assumptions on the
model (which would might prohibit their use in the models used in Sections 4 and 5.

We are currently exploring the use of randomization to refine trajectories in the presence of state
space constraints. Some experiments are shown here for the Dubins car [11]. In this model, there are
three state variables (position and orientation). The car moves forward-only at constant speed; the
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Figure 6: Trajectory design results for the X-33 reusable launch vehicle.

only input is the steering angle. The maximum steering angle induces a bound on the curvature of the
trajectory.

Two methods are currently being evaluated. For the first method, consider the classical first-order
gradient method presented in [4]. For a given control history, u(t) for ¢ € [0,ts), this iterative method
yields a perturbation, u(t) + du(t), that locally (in the trajectory space) reduces a performance criterion.
Eventually, convergence to a locally-optimal solution is obtained; however, the basic method becomes
quickly trapped if obstacles exist. One way to avoid this problem is to iteratively select a segment of
the path at random, perform the classical optimization on it, and then insert the new segment into
the original path. Figure 7.a shows a path computed by an RRT-based planner, and Figure 7.b shows
the resulting path after performing a few hundred iterations of the classical gradient descent method
on randomly-selected path segments. We note that Dubins’ shortest path curves [11, 19] could be
used instead of the method in [4]; however, this approach cannot be generalized to many systems. An
alternative method is to iteratively compute du(t), and use any perturbation u(t) + du(t) that satisfy
collision constraints and reduce the performance criterion. This method can be particularly useful if the
equations of motion are not differentiable or not even explicitly known. Figure 7.c shows an initial path,
two intermediate paths, and a final optimized path that was obtained using random perturbations. We
have yet to consider obstacles in this method, and to compare both methods. Nevertheless, it appears
so far that randomization may by useful for path smoothing and optimization.

7 Discussion

The experiments presented here show good promise for the use of randomized planning and opti-
mization methods for challenging problems that involve nonlinear systems and complicated state-space
constraints. However, many challenges remain. One of the greatest difficulties in motion planning of
trajectories is designing a metric that yields good performance. For some systems is may be possible
to utilize cost-to-go or Lyapunov functions; however, it also appears valuable to develop randomized
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Figure 7: a) A path computed using an RRT-based planner for a Dubins car; b) a refined path obtained
by iteratively optimizing random intervals using the first-order gradient method; ¢) path refinement by
random perturbations.

planning methods that have less sensitivity when presented with a poor metric. A substantial amount of
work remains on the problem of trajectory optimization in the presence of obstacles. The work presented
here represents a step in that direction be considering ways to combine classical optimization methods
with modern randomized algorithms.
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