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Improving the Performance of Sampling-Based Motion
Planning With Symmetry-Based Gap Reduction

Peng Cheng, Emilio Frazzoli, and Steven LaValle

Abstract—Sampling-based nonholonomic and kinodynamic planning it-
eratively constructs solutions with sampled controls. A constructed trajec-
tory is returned as an acceptable solution if its “gaps,” including disconti-
nuities within the trajectory and mismatches between the terminal and goal
states, are within a given gap tolerance. For a given coarseness in the sam-
pling of the control space, finding a trajectory with a small gap tolerance
might be either impossible or extremely expensive. In this paper, we propose
an efficient trajectory perturbation method, which complements existing
steering and perturbation methods, enabling these sampling-based algo-
rithms to quickly obtain solutions by reducing large gaps in constructed
trajectories. Our method uses system symmetry, e.g., invariance of dy-
namics with respect to certain state transformations, to achieve efficient
gap reduction by evaluating trajectory final state with a constant-time op-
eration, and, naturally, generating the admissible perturbed trajectories.
Simulation results demonstrate dramatic performance improvement for
unidirectional, bidirectional, and PRM-based sampling-based algorithms
with the proposed enhancement with respect to their basic counterparts on
different systems: one with the second-order dynamics, one with nonholo-
nomic constraints, and one with two different modes.

Index Terms—Kinodynamic planning, motion planning, nonholonomic
planning, symmetry.

I. INTRODUCTION

Nonholonomic planning [1] and kinodynamic planning [2], called
motion planning with differential constraints (MPD) [3], [4] together,
attract significant research efforts because of their extensive applica-
tions in robotics, manufacturing, transportation, as well as nontradi-
tional domains such as realistic computer animation [5], medical in-
strumentation [6], and verification [7]–[9]. While exact algorithms and
two-stage methods [10]–[12] are, computationally, very expensive and
limited to special systems, alternative methods [13]–[17] use sample
controls to quickly construct approximate solutions for general sys-
tems, including those neither nilpotent nor differentially flat [18] while
sacrificing completeness.

A shortcoming of these sampling-based algorithms is the fact that
they construct trajectories that present a finite number of discontinu-
ities, called “gaps” in this paper. A constructed trajectory is returned
as a solution if its gaps are less than a given gap tolerance. Gaps, es-
pecially those in the middle of the trajectory, can severely degrade the
quality of solutions by offsetting the final state away from the goal
state. (In Fig. 3, a gap between xnew and xe offsets the final state from
xgoal to xf .) Just as it is difficult for path planning to find a solution
for problems with narrow passages [19], returning a solution satisfying
a small gap tolerance tends to be extremely expensive or even impos-
sible for MPD. For example, in [20], the set of points reachable by a

Manuscript received September 26, 2006; revised May 14, 2007. This paper
was recommended by Associate Editor P. Rives and Editor L. Parker upon eval-
uation of the reviewers’ comments. This work was supported by the National
Science Foundation under CAREER Grant 9875304 (LaValle), Grant 0208891
(Frazzoli and LaValle), and Grant 0118146 (Bullo and LaValle).

P. Cheng is with the General Robotics, Automation, Sensing, and Perception
(GRASP) Lab, University of Pennsylvania, Philadelphia, PA 19104-6228 USA
(e-mail: chpeng@seas.upenn.edu).

E. Frazzoli is with the Aeronautics and Astronautics Department,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
frazzoli@mit.edu).

S. LaValle is with the Department of Computer Science, University of Illinois,
Urbana, IL 61801 USA (e-mail:lavalle@cs.uiuc.edu).

Digital Object Identifier 10.1109/TRO.2007.913993

Fig. 1. Comparison of the gap reduction by perturbation and steering.

class of systems subject to control inputs sampled from a discrete set
has the structure of a lattice, thereby preventing the exact matching
of the trajectory endpoint with the goal state. In cases in which the
set of reachable states is everywhere dense, or even continuous [21],
it is possible, in principle, to add a sequence of sampled controls to
move the final state arbitrarily close to the goal state, but this is done
at the expense of the efficiency of the trajectory and longer running
time, since there will be fewer solutions and the search depth tends to
increase.

Noticing that trajectories with large gaps can be found much easier,
a natural enhancement for sampling-based MPD is to use an additional
gap-reduction method to reduce large gaps in candidate solution trajec-
tories. If the large gaps can efficiently be reduced to satisfy the given
tolerance, a solution is quickly constructed. The gap reduction is essen-
tially a challenging two-point boundary value problem. Two methods
are sketched in Fig. 1. One approach is to analytically construct a tra-
jectory to steer the system across the gap. The method is efficient, but
is only available for a limited class of systems [18], [22]–[26]. The
other method is to minimize gaps by numerically perturbing the trajec-
tory [27]–[29]. It is applicable for general systems, but needs expensive
numerical integration in computation of the final state of the perturbed
trajectory, and is difficult to incorporate constraints on the trajectory
during the perturbation.

Our methods [30], [31] are similar to the latter approach, but dramat-
ically increase efficiency of gap reduction using system symmetries,
i.e., invariance of system dynamics with respect to a group of spe-
cial transformation (called group action), to evaluate final state with a
constant-time (with respect to integration accuracy) operation and to
naturally maintain constraints along the perturbed trajectories. The cost
of such symmetry-based gap reduction is that the application of the pro-
posed method in MPD requires that: 1) the system has symmetry (might
be neither nilpotent nor differentially flat), including most of mobile ve-
hicle systems; 2) the trajectory with gaps includes special type of states
(called coasting states), such that special type of trajectories (called
coasting trajectories) can be inserted and perturbed; and 3) if two end
states of a gap differ by not just a group action, a user-provided system-
specific preprocessing procedure is able to make them so. Note that the
second requirement is on the trajectory, for which symmetry is appar-
ently a necessary condition, but we did not find sufficient conditions
on system structures. The proposed approach was incorporated into
existing sampling-based MPD, including the unidirectional and bidi-
rectional Rapidly-exploring Random Tree (RRT) based planner [14]
and a PRM-based planner [32]. Simulation results of the improved
planners on different systems demonstrated the performance improve-
ment with respect to their basic counterparts. Besides our work, another
perturbation method is presented in [33] by tailoring the reactive path
deformation method [34].
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Fig. 2. Example of the MPD problem.

This paper is organized as follows. Section II describes the gap
problems after a brief review of MPD and its sampling-based algo-
rithm template. Section III presents the gap-reduction algorithm and
its integration with sampling-based algorithms. Simulation results are
provided in Section IV.

II. GAPS IN SAMPLING-BASED PLANNING

To be self-contained, we briefly review MPD problems and the
sampling-based MPD template in [3], [4].

A. MPD Problems

An MPD problem is characterized by state space X ⊂ R
n , in-

put space U ⊂ R
m with m ≤ n, state space obstacle as a closed

set Xobs ⊂ X , initial state xinit, goal state xgoal, and motion equa-
tion as time invariant ODEs, ẋ = f (x, u). Set Xfree = X \ Xobs is the
violation-free open set. A control, denoted as ũ, represents a piecewise-
continuous vector-valued function from [0, t] to U for some t > 0. The
control space U contains all possible controls for the system. The con-
catenation of two controls, ũ1 and ũ2, in U is defined as

(ũ1ũ2)(t) =

{
ũ1(t) t ∈ [0, t̄(ũ1))

ũ2(t − t1) t ∈ [t̄(ũ1), t̄(ũ1) + t̄(ũ2)]
(1)

in which t̄(ũ) gives the time duration of control ũ ∈ U . The trajec-
tory of the system subject to control ũ from x0 is Φ(ũ, x0 , t) =
x0 +

∫ t

0 f (x̃(τ ), ũ(τ ))dτ . A control ũ is an exact solution if: 1)
Φ(ũ, xinit, t) ∈ Xfree for all t ∈ [0, t̄(ũ)] and 2) Φ(ũ, xinit, t̄(ũ)) =
xgoal.

An MPD problem is shown in Fig. 2(a), in which a car with realistic
second-order dynamics is required to move from the initial to the
goal configuration with 60 mi/h constant forward speed while avoiding
obstacles. The state of the car [see Fig. 2(b)] is (x, y, θ, vy , ω), in which
x, y, and θ represent position and orientation, ω is the angular velocity,
and vy is translational velocity perpendicular to the forward direction.
The input u is the steering angle. The motion equation is

ẋ = vx cos(θ) − vy sin(θ) θ̇ = ω

ẏ = vx sin(θ) + vy cos(θ) ω̇ =
(fyfa − fyrb)

I

v̇y = −vx ω +
(fyf + fyr)

M
(2)

in which fyf = −Cf ((vy + aω)/vx − u) and fyr = −Cr (vy − bω)/
vx are forces on tires, vx is the constant forward velocity, and
a, b, Cf , Cr , M, I are constant parameters (see [35] for details). The
initial and goal configuration, both at rest (vy = ω = 0 be zero), are,
respectively, shown in Fig. 2(a).

Fig. 3. Gap in a bidirectional sampling-based algorithm.

B. Gaps Generated in Sampling-Based Algorithms

Sampling-based MPD incrementally constructs a search graph to
search for a solution. A node in the graph represents a state, and an
edge represents a sample control. For a given MPD problem and a gap
tolerance εg , a sampling-based planning template [3], [4] is as follows.

Step 1: The search graph is initialized with one, two, or more starting
states, which are, respectively, called unidirectional, bidirec-
tional, and PRM-based methods. In Fig. 3, the search graph
of a bidirectional method is initialized with the initial state
xinit and goal state xgoal.

Step 2: Use a given global search strategy to select a state in the
search graph, e.g., xcur in Fig. 3.

Step 3: Use a given local planner to generate a new trajectory seg-
ment from the selected state with a sample control, e.g., the
segment of ũnew from xcur in Fig. 3.

Step 4: Use a given updating policy to update the search graph with
respect to the new trajectory segment.

Step 5: Use a given solution checking criterion to determine whether
a constructed trajectory from xinit to xgoal exists to satisfy the
gap tolerance. If so, the sample controls along the trajectory
are concatenated as the solution. In Fig. 3, the thick curves
satisfy the gap tolerance, and the returned solution is ũ =
ũ1ũnewũ2 .

Step 6: Go to Step 2 until a given termination condition is satisfied.
Gaps could be induced in Step 1 between the trajectory starting state

and xinit if the starting states do not include xinit, or in Step 4 between
two consecutive trajectory segments if the control of a segment (e.g.,
ũnew in Fig. 3) does not exactly connect the starting states of these two
segments, or in Step 5 between the trajectory final state and xgoal when
the trajectory final state does not equal to xgoal.

III. MOTION PLANNING WITH GAP REDUCTION

In this section, we present the gap-reduction method after reviewing
the notion of symmetry and coasting trajectories for dynamical systems.
Finally, the proposed method is incorporated into sampling-based MPD
algorithms.

A. Coasting Trajectories of Systems With Symmetry

Let G be a Lie group, with identity element e. A (left) group action
of G on the state is a smooth map Ψ : G × X → X such that: 1)
Ψ(e, x) = x, for all x ∈ X and 2) Ψ(g, Ψ(h, x)) = Ψ(gh, x), for all
g, h ∈ G, and x ∈ X . We will often use the shorthand Ψg (x) to indicate
Ψ(g, x). A group G is a symmetry group for a control system if the
dynamics of the latter is invariant with respect to the action of G,
i.e., if Ψg ◦ Φ(ũ, ·, t̄(ũ)) = Φ(ũ, ·, t̄(ũ)) ◦ Ψg . Typically, man-made
vehicles and mobile robots are invariant with respect to certain classes
of rigid-body motions, i.e., to actions of subgroups of SE(3). While
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Fig. 4. Perturbing ũi to avoid reintegration of ũ in calculating x′
f .

there is no systematic way to deduce invariance properties of a control
system, these can often be deduced from observation and first-principle
arguments (see [36]).

State x0 ∈ X and input u0 ∈ U are, respectively, called the coast-
ing state and coasting input if we can obtain the coasting trajectory
Φ(ũ, x0 , t) = Ψ(exp(ξt), x0 ) with ũ(t) = u0 , in which ξ is an element
of the Lie algebra of G. Two boundary states of a coasting trajectory
differ by a group action, which is called the group displacement of the
coasting trajectory and can be parameterized by the trajectory duration.

The car system (2) is invariant with respect to rigid-body motions
in the horizontal plane, i.e., to actions of SE(2). Its coasting state
and input satisfy aCr (vy − bω) + av2

x Mω + bCr (vy − bω) = 0 and
u = [Cr (vy − bω) + v2

x Mω + Cf (vy + aω)]/Cf vx .

B. Efficient Gap Reduction With Symmetry

For a given MPD problem, a control ũ, a gap tolerance εg , and a
distance function,1 we will show how to use symmetry to efficiently
perturb ũ into ũ′ such that the gap distance between the final and goal
states is less than εg .

1) Efficient Final State Evaluation: Constant-time (with respect
to integration accuracy) calculation of the final state using symmetry
is one of the key factors for efficiency of our method, because such
calculation is extensively used in gap reduction. The idea is shown in
Fig. 4. By symmetry, if perturbing ũi into ũ′

i makes xi differ from x′
i by

a group action Ψg , then, the new final state x′
f equals Ψg ◦ xf without

reintegrating ũ from x′
i . If a given trajectory has multiple coasting

states, we can insert coasting trajectories after these states, and the
final state can be adjusted by perturbing durations of these inserted
trajectories. In Fig. 5, the trajectory of ũ has three coasting state and
input pairs, denoted as (xi , ui ) for i = 1, 2, and 3 (see top picture).
These states divide ũ into four controls ũ1, ũ2, ũ3, and ũ4 with durations
t1, t2, t3, and t4, respectively. Let Φt̄( ũ )

ũ = Φ(ũ, ·, t̄(ũ)) : X → X . We
have xf = Φt4

ũ 4
◦ Φt3

ũ 3
◦ Φt2

ũ 2
◦ Φt1

ũ 1
(xinit). Coasting trajectories (thick

curves) are inserted after these coasting states. These coasting controls,
denoted as ũ′

i , have constant inputs ui and changeable durations δti .
The new final state is

x′
f = Φt4

ũ 4
◦ Φδ t3

ũ ′
3
◦ Φt3

ũ 3
◦ Φδ t2

ũ ′
2
◦ Φt2

ũ 2
◦ Φδ t1

ũ ′
1
◦ Φt1

ũ 1
(xinit)

= Φt4
ũ 4

◦ Ψh 3 ◦ Φt3
ũ 3

◦ Ψh 2 ◦ Φt2
ũ 2

◦ Ψh 1 ◦ Φt1
ũ 1

(xinit)

= Ψh 3 ◦ Ψh 2 ◦ Ψh 1(xf ) (3)
in which Ψh i

is the group displacement of the i-th coasting trajectory.

1The distance function is required to be continuous. Its value is nonnegative
and will be zero if and only if the two states are equal.

Fig. 5. Trajectory perturbation by inserting coasting trajectories.

Note that the calculation of the new final state only needs to evaluate
Ψh i

without reintegrating the original controls. These group actions
need, at most, the numerical integration of the coasting trajectories,
and could even be evaluated analytically when the symmetry group is
the finite product of subgroups of SE(3), e.g., R, S1 , and SE(2). Calcu-
lating the durations of the coasting trajectories to achieve the desired
group action is also called trajectory planning via inverse kinematics
in [23]. Since analytical solutions are only available for few cases [37],
gradient-based optimization is used in this paper to compute the coast-
ing durations.

2) A Heuristic to Select Coasting Trajectories for Optimization:
Generally, if the symmetry group is ng -dimensional, perturbing du-
rations of ng coasting trajectories could eliminate the gap. If the
number of coasting trajectories is larger than ng , then, the following
heuristic is used to perturb the trajectory iteratively to avoid expen-
sive evaluation of a high-dimensional gradient vector. In each itera-
tion, only a subset of all coasting trajectories are perturbed to reduce
the gap.

Observing that most gradient-based optimization techniques employ
the steepest descent method as their starting step, it is expected that
a nonlinear program with better convergence rate at the starting point
for the steepest descent method might have a good chance to converge
faster. Therefore, we calculate the convergence rate 1/α of the steepest
descent method [38] for the nonlinear program at the starting point as
follows

α2 = 1 −

(∑
i
ς2
i λ2

i

)2

(∑
i
ς2
i λ3

i

)(∑
i
ς2
i λi

) (4)

in which {λi} are eigenvalues of Jacobian matrix J and {ςi} are co-
efficients of linear decomposition of xf − xgoal with respect to eigen-
vectors of J . In each iteration, multiple subsets of coasting trajectories
are chosen, and the subset with the highest convergence rate is used to
reduce the gap.

The intuition of (4) is schematically illustrated in Fig. 6(f). Assume
that the trajectory of a system moving in a plane has three coasting
trajectories. Vectors v1, v2, and v3 are the partial derivatives of the final
state with respect to durations of coasting trajectories, respectively.
Perturbing durations of two coasting trajectories tend to move the final
state along some direction in the cone between their partial derivative
vectors. Thus, perturbing coasting trajectories of v2 and v3 is less likely
to reduce the gap than perturbing those of v1 and v3. Equation (4) shows
that the convergence rate of v1 and v3 is larger.

C. Incorporating Gap Reduction With Sampling-Based Planning

For bidirectional methods (see Fig. 3), the following procedure is
used before checking whether the gap distance between xnew and xe is
less than gap tolerance εg .
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Fig. 6. (a)–(e) MPD problems used in the simulation. (f) Intuition of selecting
coasting trajectories.

1) Detect Solution Candidate: If the gap distance is less than a given
large gap tolerance, a solution candidate is found; otherwise,
report that no solution is detected. The large gap tolerance is
normally chosen empirically for different problems.

2) Make Two Gap States Differ Only by a Group Action: Retrieve
the control ũ of the trajectory from xinit to xnew. Check whether
ũ can be changed into ũ′ with a given preprocessing procedure
such that the new final state x′

new differs from xe by only a
group action. If not, report that no solution is detected. If such a
given preprocessing procedure is not available, an extra small gap
tolerance could be enforced in the previous step besides the large
gap tolerance. A solution candidate is detected when there exists a
group action such that the distance from the goal state to the final
state under the group action is less than this extra gap tolerance.

3) Eliminate Gap: Find the coasting states along the trajectory of ũ′.
If there are no coasting states, report that no solution is detected.
Otherwise, use an optimization solver to perturb the trajectory
to eliminate the gap for a given number of iterations. In each
iteration, a subset of coasting trajectories are selected to setup an
optimization problem using (4) in Section III-B.2. When the opti-
mization terminates, the perturbed trajectory is kept if it satisfies
all constraints or discarded otherwise. If the final gap distance
is less than εg , a solution is returned, or report no solution is
detected otherwise.

For unidirectional methods, the search graph is built only from xinit.
A solution is detected if the final state of a trajectory from xinit is in
the εg neighborhood of a goal state. Therefore, the earlier technique is
called before checking whether the new state of a trajectory from xinit

is in the εg neighborhood of a goal state.
For PRM-based planning methods, connecting two states is a critical

component. For path planning problems, the connection of two states
is simple and efficient. However, for MPD problems, it is very difficult.
When analytical connection methods are not available, sampling-based
algorithms can be used as the connection methods, and therefore, the
gap problem is induced. A constructed trajectory from xinit to xgoal

can have multiple gaps. We can simply use the unidirectional and
bidirectional algorithms improved with the proposed gap reduction as
connection methods to solve the gap problem.

IV. SIMULATION STUDIES

We did extensive simulation to compare the performance of various
sampling-based MPD algorithms with or without gap reduction on

problems with different systems. To evaluate randomized sampling-
based algorithms, simulation results were based on 20 trials of each
planner and problem pair. Due to limited computational resources, each
trial terminates if no solution is returned after 400000 iterations if no
other termination condition is specified. All simulations were done on a
2.0 GHz PC running Linux. The Numerical Algorithms Group (NAG)
library is used to solve the optimization in the gap reduction.

The gap distance is calculated with
∑n

i=1 ‖xi , x
′
i‖2wi , in which

{xi} and {x′
i} are the state variables and wi is the associated weight.

The function ‖xi , x
′
i‖ equals min(|xi − x′

i |, 2π − |xi − x′
i |) if xi de-

notes the orientation, or |xi − x′
i | otherwise. All distances are mea-

sured in feet and time in seconds. The large gap tolerance to detect
solution candidates is 100.0, and the default solution gap tolerance is
0.1. Assume that there are Nc coasting states along a trajectory, our
experiences showed that the improved planners achieved better per-
formance when the number of chosen subsets equals 
Nc /6� or 30 if
Nc/6 > 30. Each subset includes 3ng coasting trajectories.

A. Systems in the Simulation

Three systems are used in our simulation. Specially, the finite friction
model of the roller racer [39] is a switch system with two different
modes for which there are no existing results, showing that it is either
nilpotent or differentially flat up to now to the best of our knowledge.

The first system in (2) considers the second-order dynamics with
significant drift. The preprocessing procedure is to eliminate differ-
ence in z = [vy w]T between two states, which is to solve a two-point
boundary value problem for the linear system, ż = Az + Bu, in which

A =

 −Cf + Cr

vx M

Cr b − Cf a

vx M
− vx

Cr b − Cf a

vx I

b2Cr + a2Cf

vx I

 B =

−Cf

M
Cf a

I

 .

(5)
It can be verified that using two constant controls with values c1 and
c2 and the same duration δt will convert the previous linear ODE into
linear discrete equation such that the controls to eliminate difference
in z can be computed. The gap distance weights are 1, 1, 1, 1, and 100,
respectively, for vy , ω, x, y, and θ. The weight for θ is specially chosen
to be 100, since a small variation in orientation could greatly change
the final state of a trajectory.

The second system is a variation of the nonholonomic car-and-
trailer system [25] such that the existing analytical steering method is
not directly applicable (explained in the model description). Its state
is (x, y, θ1, β, θ2), in which x, y, θ1, and β are the configuration and
steering angle of the car and θ2 is the orientation of the trailer. The
system must satisfy

|θ1 − θ2| <
π

2
. (6)

The system input is (u1, u2), in which u1 ∈ [0, 2.0] is the forward
velocity, and u2 ∈ [−0.24, 0.24] is the changing rate of the steering
angle. Note that u1 is restricted to be nonnegative, so that the system
is not small time locally controllable (STLC), and the gap cannot
be reduced by trivially moving along the direction of vector fields
generated by the Lie bracket. The motion equation is

ẋ = u1 cos(θ1) ẏ = u1 sin(θ1)

θ̇1 =
u1 tan(β)

L1
β̇ = u2

θ̇2 =
u1 sin(θ1 − θ2)

L2
(7)
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TABLE I
RUNNING TIME WITH DIFFERENT GAP TOLERANCES

in which L1 = 2.0 is the length of the car, and L2 = 10.0 is the length
of the hitch. The system has symmetry group SE(2). With transforma-
tion θd = θ1 − θ2, the state is transformed into (β, θd ), and the last
equation in (7) is changed to θ̇d = u1 tan(β)/L1 − u1 sin(θd )/L2.
Then, it is easy to see that the coasting input and state satisfy
u2 = 0, tan(β)/L1 − sin(θd )/L2 = 0.

Assume that two gap states, respectively, have (β, θd ) and (β ′, θ′
d )

with θ′
d > θd , the preprocessing procedure consists of three steps: 1)

set u2 to be the maximal value and u1 zero, to increase β to its maximal
value while keeping θd constant; 2) set u2 to be zero and u1 maximal, to
increase θd to θ′

d while keeping β constant; 3) set u2 to be the minimal
value and u1 zero, to decease β to β ′ while keeping θd constant. The
gap distance weights are 1, 1, 10, 1, and 10, respectively, for x, y, θ1, β,
and θ2.

The last system is a finite friction model for the roller racer [39]. The
model considers the second-order dynamics and switches between two
modes. One is the sticking mode, in which the rolling without slipping
constraints are held on both front and back wheels, and the other is
the slipping mode, in which the front wheel slips on the ground. When
the friction between the wheel and ground cannot provide enough con-
straint force to refrain the wheel from slipping, the system will switch
into the slipping mode. By controlling the steering angle, the system
will be able to move forward and stop. A planning method is provided
in [39] to design motion between any two points in SE(2) with zero
velocities when no obstacles exist. Here, we use the proposed method
to plan motions while considering obstacles. The system has symmetry
group SE(2). Coasting states include all states in the sticking mode
with zero steering angle velocity. The weight for position and velocity
is 1 and for the orientation is 50. To include coasting states in the con-
structed trajectories, the trajectory segment in Step 3 in Section II-B
is generated with sinusoidal controls, which is conditionally followed
by a constant steering angle control if the system is not in the sticking
mode at the end of the sinusoidal control. The stop control in [39]
works as a preprocessing procedure.

B. Computational Cost of Sampling-Based MPD for Small Gap
Tolerance

We ran several experiments using the bidirectional RRT-based plan-
ner [14] to solve the problem in Fig. 6(a) for different values of the
gap tolerance; the results are reported in Table I. It can be seen that the
computational cost is very expensive when the gap tolerance is small.
Note that with gap tolerances 1.0 and 0.1, the planner, respectively,
only found 11 and 0 solutions over 20 trials. It is expected that the
average time for gap tolerance 1.0 and 0.1 would be much bigger if the
algorithm finds 20 solutions. These data strongly suggest the necessity
of planning with gap reduction when a small gap tolerance is required.

C. Comparisons With a Classical Numerical Method

We also implemented a classical numerical method to reduce the
gaps, in which the final states were calculated by numerically inte-

TABLE II
COMPARISON OF PLANNERS WITH OR WITHOUT USING SYMMETRY

grating the perturbed controls. Both the proposed method and this
classical one were incorporated with a unidirectional RRT-based plan-
ner [14]. Each sample control is constant and parameterized by an
m-dimensional vector for the input and a real number for the du-
ration. A constructed control, which consists of k sample controls,
has (m + 1)k parameters. The classical method reduces the gaps by
perturbing these (m + 1)k parameters. The 4th order Runge–Kutta
numerical integration is used, and each integration step is over 0.01
sec. duration. Simulation results from respective improved planners on
problems in Figs. 2 and 6(b) are reported in Table II, in which Tall is the
overall running time, N∫ is the number of numerical integrations, Ob.

denotes whether obstacles are considered, Symm. denotes whether sym-
metry is used, Pl. shows whether the planner is unidirectional (uni.) or
bidirectional (bi.), Sel. shows whether selecting coasting trajectories
with (4) is used, and Succ. shows the number of returned solutions
over 20 trials. The running time of the algorithm using the proposed
method is, respectively, about 3 and 1000 times less than the classical
method. In the last row in the table, no results are reported since the
classical method failed to return a solution in four days in the first trial.

One reason of the dramatic performance improvement is that the
algorithm using symmetry generated about 100 times less number
of numerical integrations than that of the classical method. Another
important reason is that the proposed symmetry-based perturbation
method naturally generates admissible trajectories, while the classical
method does not. For the problem in Fig. 6(b), a large amount of time of
the classical method was wasted to generate perturbed trajectories that
violated the constraint in (6) even though their gaps were eliminated.
This means that the proposed symmetry-based method is more suitable
than the classical method for problems with systems that have stringent
constraints on the trajectory.

D. Effects of Selecting Coasting Trajectories

The unidirectional planners using gap reduction with or without
using (4) in selecting coasting trajectories were used to solve the prob-
lems in Figs. 2 and 6(b). To compare only the effects of coasting
trajectory selection, obstacles in the problems are ignored. Similar re-
sults as Table II are reported in Table III except that Nopt, instead of
N∫ , is provided to compare the number of the NAG optimization func-

tion calls. From the table, observe that the overall time and number of
calls for the planner with coasting trajectory selection are smaller. This
demonstrates the effectiveness of the proposed heuristic in selecting
coasting trajectories.

E. Performance Improvements of the Improved Uni- and Bidirectional
Planners

The proposed gap reduction was used to improve both uni- and
bidirectional planners. Simulation results of the unidirectional planner

Authorized licensed use limited to: University of Illinois. Downloaded on October 8, 2008 at 14:44 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 2, APRIL 2008 493

TABLE III
EFFECTS OF COASTING TRAJECTORY SELECTION

TABLE IV
SIMULATION RESULTS OF THE IMPROVED UNI- AND BIDIRECTIONAL PLANNERS

TABLE V
SIMULATION RESULTS OF THE IMPROVED PRM-BASED PLANNER

for problems in Figs. 2 and 6(b) are already shown in Table II. Results
from the bidirectional planner for problems in Fig. 6(a) and (c) and from
the improved unidirectional planner for the problem in Fig. 6(e) with
the roller racer system are shown in Table IV. The basic counterparts
of these improved planners did not return a solution for these problems
over 20 trials for average 1.5 h running time.

F. PRM-Based Planner With Gap Reduction

The improved bidirectional planner was used in the basic PRM-
based method as the connection method to solve the problem in Fig. 6(d)
with the car system. The construction and query processes alternated
as follows. Every time, after the construction process inserted 50 new
vertices into the road map, we will query solutions for 40 randomly
chosen initial and goal state pairs. In the construction phase, a sampling
point tries to connect to, at most, 20 neighbors, and each connection
runs for 2000 iterations. In the query phase, a sampling point tries
to connect to, at most, 40 neighbors, and each connection runs for
20000 iterations to fully utilize the constructed road map. The results
are shown in Table V, in which V.N. and E.N., respectively, denote
the number of vertices and edges in the road map, Q.T. and C.T. are,
respectively, the overall query time and construction time, and Succ.
is the number of returned solutions over 40 queries. We can see that
with the proposed gap reduction, the PRM-based method could be used
to solve a kinodynamic planning problem without using an analytical
steering method.

V. CONCLUSION

In this paper, we proposed a symmetry-based gap-reduction method
to reduce the sensitivity of the performance of sampling-based MPD
with respect to the gap tolerance. Simulation results demonstrated that
the performance of different sampling-based MPD algorithms, includ-
ing unidirectional, bidirectional, and PRM-based methods, was dramat-
ically improved with the proposed approach to solve MPD problems

with systems which do not have analytical steering solutions. There are
many places for future improvement, e.g., systematic ways to design
the preprocessing procedures and how to reduce gaps even when the
candidate trajectory does not have coasting states, which will make the
proposed gap reduction have more general applications.
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Localization and Matching Using the Planar Trifocal
Tensor With Bearing-Only Data

J. J. Guerrero, A. C. Murillo, and C. Sagüés

Abstract—This paper addresses the robot and landmark localization
problem from bearing-only data in three views, simultaneously to the ro-
bust association of this data. The localization algorithm is based on the
1-D trifocal tensor, which relates linearly the observed data and the robot
localization parameters. The aim of this work is to bring this useful ge-
ometric construction from computer vision closer to robotic applications.
One contribution is the evaluation of two linear approaches of estimating
the 1-D tensor: the commonly used approach that needs seven bearing-
only correspondences and another one that uses only five correspondences
plus two calibration constraints. The results in this paper show that the
inclusion of these constraints provides a simpler and faster solution and
better estimation of robot and landmark locations in the presence of noise.
Moreover, a new method that makes use of scene planes and requires
only four correspondences is presented. This proposal improves the per-
formance of the two previously mentioned methods in typical man-made
scenarios with dominant planes, while it gives similar results in other
cases. The three methods are evaluated with simulation tests as well as
with experiments that perform automatic real data matching in conven-
tional and omnidirectional images. The results show sufficient accuracy
and stability to be used in robotic tasks such as navigation, global local-
ization or initialization of simultaneous localization and mapping (SLAM)
algorithms.

Index Terms—Bearing-only data, 1-D trifocal tensor, global localization,
robot vision, robust matching, SLAM initialization.

I. INTRODUCTION

When an unknown scene is observed from multiple unknown posi-
tions, a complex but well-known geometric problem appears. The goal
is to associate the observations and to recover the robot and landmark
locations. Let us focus on the case of 1-D bearing-only observations
while performing planar robot motion, which is typical for robots work-
ing in man-made environments. Robot localization based on bearing-
only data has been considered in autonomous guided vehicles using
landmarks of known location [1] and also in simultaneous localization
and mapping (SLAM), where the initialization and the data matching
are difficult problems [2].

This geometric problem is similar to the structure from motion prob-
lem studied in computer vision [3], but specialized for 1-D observa-
tions and 2-D locations. In computer vision, it is usual to relate different
views with an initial matching of relevant features, followed by a robust
estimation of a projective transformation or a tensor [4]. These tensors
provide general constraints between the bearing-only observations, and
allow us to recover the camera localization from them. For example,
the fundamental matrix has been extensively used for two-view robust
matching [5], since it provides a general constraint for 2-D bearing-
only observations. Recently, it has been applied to help loop closing
methods in SLAM [6].

However, using 1-D bearing-only data, two views do not provide
a constraint between observations; at least three views are required.
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