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Abstract

We address the problem of eliminating gaps in paths
that are constructed by some nonholonomic and kino-
dynamic motion planning algorithms. In many of these
algorithms, control inputs at each planning step are
chosen from a finite set, obtained from discretization
of the available control input set. While this approach
is attractive for computational reasons, it can generate
gaps, or discontinuities, either between path segments
or between the final state and the desired goal. For the
purpose of reducing gaps, the original control set and
continuous time interval can be utilized, and incremen-
tal perturbations may be applied to incrementally opti-
mize the gap error while respecting collision constraints.
By exploiting Lie group symmetries, which emerge in a
broad class of robot systems, we are able to avoid costly
numerical integrations that usually occur in each step
of gradient-based optimization techniques. It is hoped
that the approach can ultimately lead to faster planning
algorithms by allowing coarser discretizations of time
and the available input set, with the understanding that
later refinements can be made efficiently.

1 Introduction

A fundamental robotics problem is the automatic con-
struction of control laws that lead to collision-free paths
that satisfy kinematic and possibly dynamic equations
of motion. Therefore, considerable efforts have been
put forth to develop algorithms that compute tra-
jectories for nonlinear systems with non-convex con-
straints. Techniques that apply to the largest class of
problems usually require discretization and numerical
approximation to a continuous-time and continuous-
input system. For example in [3, 7–9, 17, 20, 25], nu-
merical dynamic programming yields approximately-
optimal solutions. Other recent approaches, such as
[5,10,11,21,23], aim at the construction of trajectories
through the sequential combination of several “motion
primitives” from a finite library, chosen through a pro-
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cess of quantization of feasible control input histories.
Other sampling-based techniques have also been pro-
posed, particularly for solving high dimensional prob-
lems [13,16,18]. Besides our work, other recent interest
in optimizing computed paths for nonholonomic sys-
tems includes [15].

Most of the existing methods that apply to gen-
eral nonlinear systems either: 1) incrementally build
a search graph from the initial state toward the goal
state, or 2) incrementally build two trees, one from
the initial state and another from the goal state, with
hopes that the two trees will eventually meet. To avoid
searching the same state repeatedly and to terminate
the search in a finite number of iterations, many meth-
ods have been used to discretize the configuration or
state space such that there are only a finite number of
nodes in the search graph. In [9], the discretization is
based on a grid built from the acceleration bounds and
a fixed time step. Nonuniform boxes are used to dis-
cretize the state space in [25]. The configuration space
is decomposed into disjoint parallelepipeds of equal size
and asymptotic completeness is derived in [3].

Although methods based on discretization and nu-
merical computation often apply to broad classes of
problems, a common limitation is the occurrences of
gaps in the solution. For example, an effect of the
quantization of available control inputs is that the sys-
tem is not small-time locally controllable (STLC): the
reachable sets under such control laws has in several
cases the structure of a lattice, thus preventing the ex-
act matching of the final point of the trajectory with
an arbitrary goal, in a finite number of steps. (In cases
in which the reachable set is everywhere dense [22], or
even continuous [10], it is possible in principle to add a
sequence of controls to move the final point arbitrarily
close to the end goal, but this is done at the expense of
the efficiency of the trajectory.) Single-tree approaches
usually will not achieve an exact goal state, and the
quality of the solution strongly depends on the level of
quantization that was used in the algorithm. Dual-tree,
bidirectional approaches can precisely attain the initial
and goal states; however, there is usually a gap in the
middle of the solution where the two trees meet.

One is often faced with the tradeoff of selecting more-
expensive approximations of the original system, either



of its state space, or of the set of control inputs, for
the purpose of reducing this error. If efficient meth-
ods can be developed to dramatically reduce this error,
then the solution quality would be greatly improved.
This is especially true for trajectories for which a gap
appears in the middle, since trajectory integration from
an erroneous starting point could dramatically alter the
final state. Furthermore, the efficiency of numerical ap-
proaches to trajectory design and nonholonomic plan-
ning can be greatly improved by attempting to solve
problems at a very coarse level of resolution with the
understanding that substantial refinement to reduce
gaps can be applied at any point. Efficient gap re-
duction techniques can also be used to enable multiple-
query roadmap methods, such as those in the proba-
bilistic roadmap framework [1, 2, 4, 12, 19, 24, 28, 30], to
be adapted to problems that involve differential con-
straints. Although some such methods already ex-
ist [26, 29], they typically require a steering solution
to be applied to avoid the gaps that would arise when
connections are attempted between states. If a gap-
reduction technique is efficient enough, it could enable
the applicability of this framework to a much broader
class of systems.

2 Problem Formulation

The focus in this paper is on a subproblem that typ-
ically arises in kinodynamic and nonholonomic plan-
ning. First, we formulate the general motion planning
problem, and then we formally state the subproblem
of interest in this paper, i.e., the improvement of the
precision of the motion planning solution.

The planning problem The planning problem is
expressed as a seven-tuple, (X , ρ,D, xinit, xgoal,U , f),
in which: 1) X is a differentiable manifold of dimen-
sion n; 2) ρ : X × X → [0,∞) is a metric on X ; 3)
D : X → R represents collision constraints on X by
requiring that the state, x, satisfy D(x) ≤ 0; 4) xinit

represents an initial state; 5) xgoal represents a desired
goal state; 6) U ⊂ R

m represents a compact set of in-
puts or controls; 7) f is a smooth mapping from X ×U
to the tangent bundle TX that encodes the system dy-
namics as a set of time-invariant Ordinary Differential
Equations (ODEs),

ẋ = f(x(t), u(t)), (1)

in which x(t) ∈ X , u(t) ∈ U , and t ∈ [0,∞). For non-
holonomic planning, f represents non-integrable con-
straints on the tangent bundle TX , and for kinody-
namic planning, f includes second order time deriva-
tives of the configuration variables (it may be an exam-
ple of both nonholonomic and kinodynamic planning).

Let u denote a piece-wise continuous, open-loop con-
trol law, u : [0, tf )→ U , which can be used to produce a
state, x(t), via integration of (1), if some x(0) is given
and t ∈ [0, tf ). Let Φt

u : X → X denote a mapping
that takes a starting state, x(t0), to a state x(t0 + t),
after the application of u for duration t (note that the

time argument to u will be shifted by −t0 because the
domain of u is [0, tf )). The choice of t0 is arbitrary
due to time invariance of (1), and therefore it is not
represented in the notation Φt

u.
The planning problem is to find some u (and

associated tf ) such that xgoal = Φ
tf
u (xinit) and

D(Φt
u(xinit)) ≤ 0 for all t ∈ [0, tf ). In practice, how-

ever, quantization is performed in most planning algo-
rithms, which leads to approximate goal satisfaction,

ρ(Φ
tf
u (xinit), xgoal) < ε, for some specified precision

ε > 0. Such a gap can appear, for instance, at the
end of the trajectory using the grid-based dynamic pro-
gramming method of [3], or even in the middle of the
trajectory when trying to connect two trees in the bidi-
rectional Rapidly-exploring Random Trees (RRT) ap-
proach [18]. In this paper, we only formulate the prob-
lem of reducing the gap at the end of a trajectory; how-
ever, only minor notational adjustments are necessary
to apply the techniques to reducing gaps in the middle
of a trajectory.

In most cases, the running time of the planning al-
gorithm will increase dramatically as ε is decreased.
Therefore, it is useful to solve the subproblem of tak-
ing a computed u, and perturbing it into a new control
function that achieves improved accuracy by reducing

the gap between Φ
tf
u (xinit) and xgoal. By this approach,

a planning algorithm can generate a solution quickly for
a large ε tolerance, and then improve the accuracy in a
second stage, which is the main topic of this paper.

Closing Gaps to Improve Precision Assume here
that a control function u has been computed as an ap-
proximate solution to the planning problem, which is
specified by the seven-tuple. The task is to perturb u
into a control function, v : [0, t′f )→ U , such that

ρ(Φ
t′f
v (xinit), xgoal)¿ ρ(Φ

tf
u (xinit), xgoal),

while ensuring that D(Φt
u(xinit)) ≤ 0 for all t ∈ [0, t′f ).

This optimization of ρ will occur as a sequence of small
perturbations that incrementally transform u into v
while preserving all constraints. Ideally, we would like

to obtain Φ
t′f
v (xinit) = xgoal, but this will not usually

be possible due to numerical considerations and limita-
tions of a particular homotopy class (our methods will
not be allowed to change path classes).

Perturbations to u will be generally achieved by first
partitioning the domain of u into k small segments, and
then reparameterizing each segment to start at time
0 while preserving its length. Choose k positive real
values, t1, t2, . . ., tk, such that t1 + t2 + · · · tk = tf .
For each i ∈ {1, . . . , k}, a function ui : [0, ti) → U is
constructed so that ui(t) = u(t1 + · · ·+ ti−1 + t). Due
to time-invariance, note that the same state will be
reached whether u is applied or u1, . . ., uk are applied
in succession. In terms of Φ, this can be expressed as

Φ
tf
u (xinit) = Φtk

uk
◦ · · · ◦ Φt2

u2
◦ Φt1

u1
(xinit). (2)

Suppose that a small perturbation is made to some ui.
To determine the resulting final state, numerical inte-

2



gration must ordinarily be carried out using uj for all
j such that i ≥ j ≥ k.

Numerical optimization algorithms require the fre-
quent evaluation of the distance function ρ with respect
to various new control functions. Direct application of
standard optimization techniques will lead to excessive
computational requirements in all but the most trivial
cases (e.g. linear or low-dimensional systems).

Our optimization methods perform perturbations
that avoid the costly numerical integrations by exploit-
ing fundamental geometric symmetry properties of the
systems of interest in robotic motion planning. The
group actions are used to quickly transform the latter
portions of a changed trajectory, which avoids integra-
tions and leads to dramatic performance improvements.

3 Symmetries of Robot Systems

The main idea behind the algorithm we propose is the
exploitation of the symmetries in the system dynamics.
In this section we define and illustrate symmetries, i.e.,
invariance properties of mechanical systems, and some
of their applications to motion planning.

For the sake of simplicity, we assume that the state
can be partitioned, at least locally, into the Cartesian
product of two manifolds X = G × Z, where G is a
Lie group with identity element e. For simplicity of
exposition, we will assume that Z = R

nz , nz < n. Ac-
cordingly, we write the generic point x ∈ X as the pair
(g, z) ∈ G × Z. Following conventions from differential
geometry, Z is the base space, G is the fiber, and their
product X is a principal fiber bundle; see [14].

Let the left action, denoted as Ψ, of G onto X be
defined as follows:

Ψ : G × X → X

(h, x) 7→ Ψh(x) = (hg, z).

We call G a symmetry group for the system (1) if its dy-
namics are invariant with respect to the left action. In-
variance is equivalent to the following statement. Given
any trajectory t 7→ (x(t), u(t)) ∈ X ×U which is a solu-
tion to equation (1), the trajectory t 7→ (Ψh(x(t)), u(t))
is also a solution to equation (1) for all h ∈ G.

Generally, the dynamics of systems with symmetry
group G can be decomposed in the following way:

ġ = fg(g, z)
ż = fz(z, u).

(3)

It can be easily verified that invariance implies that
group actions commute with state transitions; from
the above definition of invariance, we know that if

xf = Φ
tf
u (xinit), then Ψh(xf ) = Φ

tf
u (Ψh(xinit)), i.e.,

Φ
tf
u = Ψ−1

h ◦Φ
tf
u ◦Ψh. This leads to the key step in our

proposed procedure. When we modify the input signal
ui of duration ti to u

′
i of duration t′i, we will require that

for some hi in G, the corresponding state transition, at
the i-th step, can be decomposed as follows:

Φti

u′
i
= Ψhi

◦ Φti
ui
. (4)

Thus, the perturbed state transition can be decom-
posed as an action of the symmetry group on the un-
perturbed state transition. If this is true, then the per-
turbed final state x′f , given a change in the control
signal during the i-th interval only, can be expressed as

x′f = Φtk
uk
◦ · · · ◦ Φ

t′i
u′

i
◦ · · · ◦ Φt1

u1
(xinit)

= Φtk
uk
◦ · · · ◦Ψhi

◦ Φti
ui
◦ · · · ◦ Φt1

u1
(xinit)

= Ψhi
◦ Φtk

uk
◦ · · · ◦ Φti

ui
◦ · · · ◦ Φt1

u1
(xinit)

= Ψh1
(xf ).

(5)

Thus, we need to compute only the new state transition
during interval i to determine the new final position.

Intuitively, the fact that the perturbed state tran-
sition at the i-th step differs from the original state
transition by an action of the symmetry group, means
that the remaining part of the trajectory can be “trans-
lated” rigidly without need for re-computation.

Enforcing (4) is equivalent to requiring that the per-
turbation does not change the starting and ending con-
dition, in each time interval, of the base variable z. In
other words, if x(t) = (g(t), z(t)) is the nominal trajec-
tory, and xp(t) = (gp(t), zp(t)) is the perturbed trajec-

tory, we require than z(Ti) = zp(Ti) with Ti =
∑i

j=1 ti,
for i = 1 . . . k.

4 Using Symmetries to Avoid

Integrations

Because computation of the final state is extensively
used in both evaluation and finite-difference gradient
calculation of the objective function, we will concen-
trate on how to calculate the final state efficiently by
exploiting symmetries of the system. Without this
method, the computation time in each iteration grows
linearly with the number of integration steps along
a trajectory. By exploiting symmetries, the compu-
tation time is reduced to a constant-time operation
(with respect to integration accuracy). In this section,
two methods are presented: one based on feedback-
linearizable base dynamics, and another for systems
with affine-in-control base dynamics. Our simulations
in Section 6 indicate that the second of these methods
is by far the most efficient.

Method 1: Feedback-linearizable base dynam-
ics A system with feedback-linearizable base dynam-
ics is one for which there exists a change of coordinates
(z, u) 7→ (ζ, v) for system equation (3) such that the dy-
namics on the transformed base are linear, i.e., equation
(3) can be rewritten as:

ġ = fg(g, ζ)

ζ̇ = Aζ +Bv.
(6)

Systems which can be reduced to this form include
many static- and dynamic-feedback-linearizable sys-
tems . The unicycle model (10) and 5-dimensional car
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model (11), on which we did simulations, belong to this
category. See Section 6.1.

To modify the trajectory and maintain the base at
time Ti, we employ the linear structure on the base of
these systems (6). Specifically, for time interval ti with
control signal ui, we could partition it into l subinter-
vals of equal length δti =

ti

l
. Assume the control signal

uji in subinterval j is constant for j = 1, . . . , l and the
base of the starting state of interval ti is zi−1. Then we
can calculate the base of the end state zi of interval ti
with a closed form by solving the linear time-invariant
ODEs describing the base dynamics.

zi = Afzi−1 +Bfud, (7)

where Af = Al
d, Bf =

[

Al−1
d Bd, A

l−2
d Bd, · · · , Bd

]

,

Ad = eAδti , Bd =
∫ δti

0
eA(δti−t)Bdt, and ud =

[(u1i )
T
, · · · , (uli)

T
]T . Therefore, if we choose v from the

kernel space of Bf in (7), the base state will be main-
tained at time Ti and the final state will be calculated
efficiently.

Method 2: Affine-in-control base dynamics
Even though the above method saves numerical inte-
gration in unperturbed time intervals, the computation
is still expensive for the remaining numerical integra-
tion. The basic idea of the method introduced in this
paragraph is that, instead of partitioning time intervals
and choosing v in the kernel space of Bf in (7), we in-
sert new trajectory intervals between two pre-existing
intervals. However, to avoid numerical integration and
exploit symmetries of the system, there should exist a
control signal ū for the inserted trajectory such that
base will be kept constant, i.e., the fz(z, ū) = 0 in (3).

Determining values of the control input u that sat-
isfy this condition is particularly easy for systems with
affine-in-control base dynamics, i.e., systems whose
base dynamics is described by an ODE of the form

ż = fx(x) + fu(x)u.

Clearly, systems with feedback-linearizable base dy-
namics belong to this class.

An example of the system with affine-in-control base
dynamics but without feedback-linearizable base dy-
namics is a trailer system used in our simulation. The
trailer system consists of a car pulling a trailer. The
state of the system can be represented using a local
chart, as (x, y, θ1, β, θ2), in which x, y, and θ1 are x-,
y-coordinates and orientation of the car, β is the steer-
ing angle of the car, and θ2 is the orientation of the
trailer. The input to the system is (u1, u2), in which
u1 is the translational velocity along x-axis of the local
frame of the car, and u2 is the rate of change of the
steering angle. The dynamics of the trailer system are
as follows:

ẋ = u1 cos(θ1)
ẏ = u1 sin(θ1)

θ̇1 = u1 tan(β)/L1

β̇ = u2
θ̇2 = u1 sin(θ1 − θ2)/L2,

(8)

in which L1 is the length of the car, L2 the length
of the hitch. By introducing the transformation θd =
θ1 − θ2, the last equation in (8) is changed to θ̇d =
u1 tan(β)/L1 − u1 sin(θd)/L2. Then, the fiber coordi-
nates are (x, y, θ1), and the base coordinates are (β, θd).
Choosing u2 = 0 at state with tan(β)/L1−sin(θd)/L2 =
0 will keep the base constant.

Assume that base at time Ti is z(Ti) = z̄, a new tra-
jectory interval t ∈ (Ti, Ti + δt) 7→ (x(t), z̄) is inserted
after Ti. When the new trajectory has some control
signal ū to keep the base of the system constant, Φδt

ū
is an element of the symmetry group, generated as the
exponential of an element of the Lie algebra g of G. The
element η of the Lie algebra is calculated from base z̄.

5 General Algorithm Overview

Assume that a vector p in R
kp characterizes the con-

trol function u, and is the input to the gap reduction
algorithm. The kp generally is large even when the
control function is discretized over time. We define the
final state as a function xf : R

kp → X according to
(2). Reducing the gap is to search in R

kp for a p∗ such
that ρ(xf (p

∗), xgoal) ≤ ρ(xf (p), xgoal) for all p ∈ R
kp

and the control function u, parameterized by p∗, is
violation-free. By saying a control signal u : [0, tf )→ U
is violation-free, we mean that D(Φt

u(xinit)) ≤ 0 for all
t ∈ [0, tf ). This gap reduction problem generally is a
high-dimensional nonlinear program with nonvex con-
straints, in which xf (p) is a nonconvex function, non-
convex constraints exists due to obstacles in the con-
figuration space and high-dimensionality comes from
the large number kp. In this paper, this problem is
attacked by solving a sequence of low-dimensional non-
linear programs with nonconvex constraints. In each
low-dimensional nonlinear program, a low-dimensional
subspace of R

kp is searched to optimize the objective
function.

Outline of the algorithm The gap reduction al-
gorithm is shown in Fig. 1. The algorithm runs it-
eratively until NotTerminated() returns “false”, which
means that the algorithm has run for either a given
number of iterations or a given period of time. In each
iteration, a low-dimensional subspace S ⊂ R

kp is first
chosen. The subspace S combines with the objective
function to compose a low-dimensional nonlinear prob-
lem, which is solved to generate a new parameter vector
pn. If the control function, parameterized by pn, is not
violation-free, pn is discarded; otherwise, the value of
ρ(xf (pn), xgoal) is checked. If the value is less than
the given εc, pn will be reported as the final solution;
otherwise, current parameter vector p is set to pn.

Selection of subspace for the nonlinear program
Because of the combinatorial complexity of possible
choices of subspace in R

kp , it is impractical to enumer-
ate all choices. An easy way to select search subspace
is to just randomly choose kc dimensions from R

kp . To
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avoid the calculation of high-dimensional gradient vec-
tors, it is better to choose smaller kc. However, because
the perturbation of one parameter will cause the final
state to move in a space of at most one dimension, kc
should be at least the dimension of the fiber space to
ensure the fiber of the final state to move in the whole
fiber space. The problem with the randomly chosen
subspace S is that the Jacobian matrix J of the objec-
tive function with respect to variable elements of p in
S might be ill-conditioned and/or the current p might
be a bad starting point for the optimization. In these
cases, the convergence rate of the optimization process
could be very small, especially when the search space
is restricted in the kernel space of Bf in (7).

Observing that most gradient-based optimization
techniques employ the steepest descent method as their
starting step, it is expected that a nonlinear program
with better convergence rate at the starting point for
the steepest descent method might have a good chance
to converge faster using other optimization techniques.
Therefore, we approximately calculate the convergence
rate 1

α
of the steepest descent method [27] for the non-

linear program at the starting point as follows:

α2 = 1−
(
∑

i ξ
2
i λ

2
i )

2

(
∑

i ξ
2
i λ

3
i )(

∑

ξ2i λi)
, (9)

in which {λi} are eigenvalues of Jacobian matrix J and
{ξi} are coefficients of linear decomposition of xf (p)−
xgoal with respect to eigenvectors of J .

Therefore, we choose a finite collection C of subspace
of R

kp and calculate α for each corresponding nonlinear
program. The subspace with the smallest α is used to
compose a nonlinear program. If the cardinality of C is
large, a large amount of time in subspace selection will
decrease the overall performance. If the cardinality of C
is small, optimizing the chosen nonlinear programs with
small convergence rate will also affect the performance.
According to our experiences, when the cardinality of

C was in [
kp

10 ,
kp

4 ], the performance was the best.

6 Simulation Studies

We performed simulations based on three nonlinear sys-
tems: a unicycle, a car with dynamics, and a kinematic

Gap Reduction(X , ρ,D, xinit, xgoal, U, f, p, εc)
1 Initialize the algorithm;
2 while NotTerminated() = true

3 S := SubspaceSelection(Rkp);
4 pn := Optimize(ρ(xf (p), xgoal)), p ∈ S;
5 if Collision(pn) = false then

7 if ρ(xf (pn), xgoal) < εc then

8 return pn;
9 else p := pn;
10 return failure.

Figure 1: The gap-reduction algorithm.

car pulling a trailer. The implementation was done in
Matlab on a 1.2Ghz PC running Windows XP. Matlab’s
nonlinear programming function, fmincon, was used to
solve low-dimensional nonlinear programs. Only the
relative times are important in Fig. 3; we expect that
the running times would be one or two orders of mag-
nitude faster if implemented in C++ on a current PC
under Linux.

6.1 Models

The unicycle A coordinate representation of the
state is (x, y, θ, vx, vy, ω), in which x ∈ [0, 100], y ∈
[0, 100], and θ ∈ [−π, π] represent position and orienta-
tion of the unicycle; ω ∈ [−3, 3] is the angular velocity,
and vx ∈ [−15, 15] is translational velocity along the
x-axis of the body frame. The translational velocity
along the y-axis of the body frame is constrained to be
zero. The body frame used to describe models in the
paper is a coordinate fixed on the system moving in a
2D plane with x-axis along the forward direction and
y-axis along the direction perpendicular to the forward
direction in the plane. The input vector is (u1, u2),
in which u1 ∈ [−1, 1] is the rate of change of vx, and
u2 ∈ [−4, 4] is the rate of change of ω. The equations
of motion (f from Section 2) are

ẋ = vx cos(θ)
ẏ = vx sin(θ)

θ̇ = ω
v̇x = u2
ω̇ = u1.

(10)

Car with dynamics The state vector, in coordi-
nates, is (vy, ω, x, y, θ), in which x ∈ [0, 800], y ∈
[−800,−450], and θ ∈ [−π, π] represent position and
orientation; ω ∈ [−10, 10] is the angular velocity, vy ∈
[−10, 10] are translational velocity along the y-axis of
the local frame fixed on the car. The input to the sys-
tem is the steering angle, u ∈ [−0.6, 0.6]. The equations
of motion are

v̇y = −vxω + (fyf (u) + fyr(u))/M
ω̇ = (fyfa− fyrb)/I
ẋ = vx cos(θ)− vy sin(θ)
ẏ = vx sin(θ) + vy cos(θ)

θ̇ = ω,

(11)

in which vx = 88 is constant translational velocity along
x-axis of the local frame, M and I are the mass and
inertia, and fyf (u) and fyr(u) are linear functions of u
and represent forces acting on front and rear tires along
the y-axis of the local frame.

The trailer system The equations of motion are
given in (8). The state space bounds are: x ∈ [0, 400],
y ∈ [0, 400], θ1 ∈ [−π, π], β ∈ [−0.6, 0.6], and θ2 ∈
[−π, π] . The bounds on inputs are u1 ∈ [0, 2.0] and
u2 ∈ [−0.24, 0.24]. Note, we intentionally set u1, the
forward speed, to be nonnegative so that the system is
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not STLC, and the gap cannot be reduced by trivially
moving along the direction of Lie bracket.

6.2 Results

Three methods were compared, which included a clas-
sical gradient descent, Method 1, and Method 2. The
classical method does not use symmetries of the system
and calculates the final state by numerically integrat-
ing the control function. All three methods used the
randomized subspace selection algorithm from Section
5 with kc be 6 and the cardinality of C be 10. Ten trials
were done to the same problem for each algorithm; each
trial consists of 20 iterations of subspace selection, and
corresponding nonlinear program optimization. The
average final value of objective functions and overall
running time over ten trials were reported. When ap-
plying Method 2 on the trailer system, instead of insert-
ing intervals after states with tan(β)/L1−sin(θd)/L2 =
0 to maintain the base, we inserted intervals after states
with tan(β)/L1−sin(θd)/L2 < 0.4. After a new control
function is returned from the gap reduction algorithm,
we calculated final states of the new control function us-
ing symmetries and numerical integration, respectively.
The only difference between two final states was at the
orientation of the trailer, θ2, and the maximum differ-
ence was 0.082.

The objective function used to measure gap error be-
tween the final state and the goal state is ρ(xf , xgoal) =
n

∑

i=1

wi|xf , xgoal|
2
i , in which wi is a weight for each

dimension, and |·, ·|i calculates the distance between
the ith element of xf and xgoal considering topology.
Weights are used for giving greater importance to state
variables that may have smaller ranges. In our im-
plementation, if the ith element of the state corre-
sponds to the orientation of the system, wi = 10 and
|x, y|i = min(|xi − yi|, |xi − yi| − π); otherwise, wi = 1
and |x, y|i = |xi − yi|, in which x, y ∈ R

n, xi and yi
are ith element of x and y, and | · | returns the absolute
value.

A piecewise constant control function for each mo-
tion planning problem, shown in Fig. 2, was calculated
using the resolution-complete RRT algorithm [6]. The
original gaps between final states and goal states are
small in the sense that the initial value of objective
functions is less than 5. We also changed the goal state
to generate problems with large gaps, i.e., problems
with the initial value of objective functions larger than
5. In fact, to make the problem more difficult, the ini-
tial value of objective functions for large gaps in Fig. 2
is much larger than 5.

All three methods were applied on each problem with
both small and large gap. Sample solutions for each
problem obtained using Method 2 are shown in Fig. 2.
From simulations, we observed that all three methods
could close small gaps and their performance is com-
pared in Fig. 3. For problems with large gaps, because
only Method 2 works, we provided its results separately
to avoid excessive empty entries in Fig. 3.
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1. Problem with the unicycle.

0 100 200 300 400 500 600 700 800
−800

−750

−700
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−600

−550

−500

2. Problem with the 5-dimensional car.

3. Problem with the trailer system.

Figure 2: Gap reduction for problems with three dif-
ferent models, in which solutions returned from a mo-
tion planner are shown as continuous lines; dashed lines
show solutions after closing the large gaps; dotted lines
show solutions after closing the small gaps, and thick
segments along dashed and dotted lines are inserted
trajectory intervals by the gap reduction algorithm.
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Classical Method 1 Method 2
Ini. (w/o symm.)
val. av. T av. T av. T

f.v. (s) f.v. (s) f.v. (s)
1 2.6 0.040 3146 0.48 1654 0.013 39
2 3.9 0.062 9689 0.45 9191 0.043 97
3 4.9 0.21 65610 N/A N/A 0.051 142

Figure 3: Comparison of performance for a classical
approach, and two methods that exploit symmetries.
Method 2 yields the best performance by far.

Comparison of performance on problems with
small gaps Results of simulations is shown in Fig. 3,
in which the numbers 1, 2 and 3, denote problems that
involve the unicycle, car with dynamics, and the trailer
system, respectively; “ini. val.” is the initial value
of objective functions; “av. f.v.” is the average final
value of objective functions; “T” is the overall running
time. The data of Method 1 for the trailer system is
not available (N/A) because the system is not feedback-
linearizable. The duration of initial control functions
from the planner for each problem is 13, 9.2, and 130
seconds, respectively

¿From the table, note that the performance of
Method 1 and the classical method is comparable be-
cause even though Method 1 has smaller running time,
its average final value is bigger than the latter method.
There are two reasons. The first reason is that the ini-
tial control functions for problem 1 and 2 only last for
9.2 and 13 seconds, respectively. Because Method 1
perturbs the control function in the kernel space of Bf

in (7), it sustains more constraints and a harder opti-
mization problem which might need to solve more low-
dimensional nonlinear programs. If the control func-
tion is short and the cost of numerical integration from
xinit is not big, computational saving from the numer-
ical integration might not cover the cost to solve more
nonlinear programs. The second reason is that the in-
put space of these two problems is small, [−0.6, 0.6]
and [−1, 1] × [−4, 4], respectively, which leads to an
even harder optimization. We redesigned the problem
with the unicycle model. The input space was increased
to [−10, 10] × [−40, 40], and the length of the original
control sequence was increased to 39 seconds. Ten tri-
als were done using each method. Using the classical
method, the overall running time is 17128 seconds. Us-
ing Method 1, the overall running time is 2633 seconds,
which is significantly improved. Using Method 2, the
overall running time is 187 seconds, which is dramati-
cally superior.

Problems with large gaps Because only Method 2
worked for problems with large gaps, only results for
Method 2 are presented.

For the problem with the unicycle, xinit is
(0.5, 54, 0, 0, 0), xgoal is (50, 54,−0.5, 7, 0.4), and the
initial final state xf is (49.9, 60,−0.8, 7, 0.4). Of ten

trials, the average final value of the objective function
is 0.021, and the overall running time is 73.4 seconds.
For the problem with the car with dynamics, xinit is
(0, 0, 5,−540, 0), xgoal is (7, 0.2, 715,−650, 0), and the
initial xf is (7, 0.2, 639,−649,−0.25). Of ten trials, the
average final value is 0.023, and the overall running time
is 120.47 seconds. For the problem with the trailer sys-
tem, xinit is (71, 56, π, 0, π), xgoal is (80, 40, 0, 0.04, 0),
and the initial xf is (64, 18,−0.35, 0.04,−0.4). Of ten
trials, the average final value is 0.0094, and the overall
running time is 163.75 seconds.

7 Conclusions

Based on our experiments, we conclude that our
symmetry-based methods are highly successful at re-
ducing precision errors in computed trajectories. The
methods apply to base dynamics that are feedback lin-
earizable or affine in control, which includes many in-
teresting systems that arise in robotics. With an op-
timized implementation, we expect the running times
to be fast enough to enable many interesting improve-
ments of existing nonholonomic and kinodynamic plan-
ning techniques. For example, coarser quantizations
may be used, paths from multiple search trees can be
combined, and entire search trees may be recycled by
applying group actions. In future work, we hope to
combine the methods developed here with planning al-
gorithms in applications such as robotics and computer-
generated animation.
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