
Bouncing Robots in Rectilinear Polygons

Onur Çağırıcı,1 Yeganeh Bahoo,1 and Steven M. LaValle2

Abstract— In this paper, we describe a bouncing strategy (smart
strategy) for a mobile robot that uses one bit of memory for
feedback, and guarantees that the robot will traverse all the
rooms (and doorways) of a 2D environment. The environment
is modeled as a rectilinear polygon (also called orthogonal
polygon), and the rooms and the doorways are defined by the
decomposition algorithm we describe. Such a decomposition
helps the robot to not go back to a room after leaving. We
also define the notion of “virtual doors” that have the ability
to let the robot through, or make the robot bounce from them.
We compared three different types of bouncing rules: smart,
random, billiard. The smart strategy grantees to reach to target.
Although the random strategy on average behaves the same as
the smart strategy, there are rectilinear polygons in which the
robot cannot reach the target in the expected time steps. On
the other hand, the billiard bouncing strategy can cause the
robot to become trapped.

I. INTRODUCTION
We study the problem of navigating a polygonal envi-
ronment. This environment can be interpreted as a large
warehouse with multiple rooms. The robot is not given
any cameras or depth sensors that could otherwise measure
distances or other geometric properties of the environment,
and its goal is to reach to a particular area inside the polygon
(or a particular room inside the warehouse). The robot is
simply commanded to move straight, and does not change
its direction of motion until it hits a wall. After it hits a wall,
the robot “bounces” off of that wall, and continues to move to
another direction. Given the angle of incidence α, the robot
rotates, and orients itself to move to a new direction based
on the bouncing rule. The bouncing rule can be a function
of α, or can be independent.
In Figure 1, a robot R (denoted by a black circle) is moving
in the direction d⃗i towards a wall. After hitting the wall, the
robot changes its direction to d⃗i+1. The angle αi between d⃗i
and the wall is referred to as angle of incidence or hitting
angle, and the angle βi between d⃗i+1 and the wall is referred
to as the bouncing angle.
Problem definition In this paper, we study the effect of the
bouncing rule on the time taken by the robot to achieve its
goal. Given a rectilinear polygon, the goal is to determine
a bouncing rule for the robot, such that the robot definitely
reaches a pre-defined target area without begin equipped by
any type of environmental sensors (cameras etc.).
We concentrate on two well-known bouncing rules, and then
propose our own bouncing rule. The first rule is reflective
bounce, in which the angle of incidence is equal to the angle

*This research has been supported by the Ryerson University Faculty of
Science Dean’s Research Fund

1Department of Computer Science Ryerson University, Toronto, Canada
(bahoo,cagirici)@ryerson.ca

2 Center for Ubiquitous Computing, University of Oulu, Oulu, Finland
steven.lavalle@oulu.fi

e

d⃗i

d⃗i+1R

R

αi
βi

Fig. 1: The robot R with the direction d⃗i hits the wall
with the hitting angle α, and then bounces back with the
bouncing angle β, changing its direction to d⃗i+1. This bounce
is denoted by (e, αi, βi)

of reflection (i.e., billiard ball reflection). The second rule is
random bounce, in which the robot bounces off of a wall
with a random angle, regardless of the angle of incidence.
In this sense, the bounce of a robot can be mathematically
equivalent to a light ray bouncing off of a (not necessarily
flat) mirror. Thus, we can reduce the problem of a robot
bouncing off of the wall and reaching at a particular area to
a ray reflecting off of a sequence of mirrors and lighting up
any point inside a particular area.

II. RELATED WORK
There are several studies in which the problem of navigating
a bouncing robot is considered a combinatorial problem.
Sanai has described the setting as a dynamic system, and
computed the physical and statistical aspects of the envi-
ronment [1]. Boldrighini et al., on the other hand, studied
the computational aspects of the reflection by interpreting
the setting as a billiard ball bouncing around in a polygon
[2]. As opposed to a billiard ball’s reflection (or bouncing)
with respect to the rules of physics, there are studies which
consider the random reflection inside a polygon [3]. Takorsky
studied the possible shots on a polygonal billiard table to
shoot the billiard ball to a target point [4], Finding that not
every point is reachable for a robot (can be illuminated by
a light ray) unless the bouncing rule is random (the diffuse
reflection is used).
The studies we mentioned so far consider the reflection of a
single ray (or bouncing of a single object). In addition, there
are studies which assume that the rays are shot from a single
source and reflect everywhere. This notion is called diffuse
reflection. Ghosh et al. studied the properties of diffuse
reflection, and described algorithms to compute the shortest
path of a ray from a given source to a given target [5]. Aronov
et. al. studied diffuse reflection assuming that the mirror on
the boundary of a polygon is a line segment instead of the
whole edge [6], [7]. Fox-Epstein et. al. showed that a single
light source is able to illuminate a polygon with n edges
after at most ⌊(n− 2) /4⌋ diffuse reflections [8].
Foldes et. al. studied combinatorial aspects of illuminating
a set of object describing a partially ordered set [9]. This

study, although not directly related to reflection, introduces
the difficulty of computing the “hardness” of a robot to reach
to a particular region in a polygon.
The robots that have no environmental sensors were studied
deeply in Nilles’s PhD dissertation [10], [11]. Alam and
Bobadilla also studied the problem of determining an effi-
cient bouncing rule in rectilinear polygons [12] for multiple
robots to monitor the environment. However, the goal of
these works are slightly different than ours. They aim to find
trajectories such that multiple robots patrol in their relative
areas without colliding with each other.
The studies we mention all focus on the geometry of reflec-
tion (in our case, bouncing) in a polygonal environment. We
focus on the geometry of the polygon, and aim to answer
the question “What kind of bouncing rule should a robot use
to reach its target after a reasonable number of bounces?”
instead of “Can the robot ever reach to its target?” In this
paper, we describe a bouncing rule that uses only one bit
of memory, and lets the robot reach a particular area in a
rectilinear polygon given the starting position of the robot,
and the polygon.

III. MOTIVATION
Similar to Foldes et. al., we also focus on the “hardness” of
a robot to reach to a particular region in a polygon. We use
a data structure called “reachability graph” to analyze how
hard it is for a robot to reach to a region (target region).
To obtain the reachability graph, we first decompose the
polygon into subpolygons, and then analyze the relationship
between two neighboring subpolygons. The decomposition
(or partitioning) of a polygon is done by bottleneck segments.

Definition 1 (Bottleneck segment): A bottleneck segment
the shortest line segment pq drawn between a reflex vertex
in the polygon and the boundary of the polygon, such that
pq lies completely inside the polygon, and does not intersect
the boundary except the endpoints.

The main reason behind this decomposition is to define
the subpolygons obtained by the decomposition as (virtual)
rooms, the bottleneck segments as (virtual) doors, and de-
termine by the central system a sequence of rooms that the
robot has to pass through. Initially, all the doors that lead to
rooms that are not in the sequence are closed. To navigate the
robot from one room to another, we can place doors on the
bottleneck segments, and close them once the robot leaves
the room. These doors might be physical automatic doors,
as well as “virtual” doors that use RFID system to prevent
robot from passing through. We explain the decomposition
algorithm in detail in Section V.

IV. TERMINOLOGY
This paper considers 2D Euclidean geometry. A line segment
pq is two points p and q, and the set of points on the
shortest distance between them. The angle ∇(pq) of a line
segment pq is the smallest angle between x-axis and pq. A
polygonal chain is a set p1q1, . . . , pnqn = of non-intersecting
line segments where qi = pi+1 for i ∈ {1, ..., n}. A simple
polygon is the set of points enclosed by the polygonal chain
p1q1, . . . , pnqn, plus the line segment qnp1. A rectilinear

polygon is when ∇(piqi) ∈ {0, π/2}. These line segments
are called edges of the polygon, and the endpoints of line
segments are the vertices of the polygon. We denote a simple
polygon by P throughout this paper. The vertex set, and the
edge set of P are denoted by V (P) and E(P), respectively.
The boundary of a polygon P is the set of all points that are
on E(P), and is denoted by ∂(P). The interior of P is the
set of points P \ ∂(P).

V. DECOMPOSITION
Our decomposition algorithm utilizes the bottleneck seg-
ments while partitioning a given polygon. We refer to the
partitions as “rooms” or “subpolygons” throught the paper.
Such a decomposition allows us to tackle the combinatorial
problems by dividing them into sub-problems, i.e., the robot
leaving a rectangular room. Since we close the door after the
robot, if we can guarantee that the robot will leave any kind
of rectangular room. Then, we can apply the same solution
to every room in the polygon to navigate the robot to its
target.
Let us describe our algorithm for partitioning a rectilinear
subpolygon. Afterwards, we give examples on the utilization
of the decomposition.

Input: A simple polygon P = (V (P), E(P))
Output: A set P of polygons where

⋃
Pi∈P

= P

1 P← ∅;
2 Γ← ∅ /* Set of virtual doors */
3 foreach reflex vertex v of P do
4 dmin ←∞;
5 smin ← NULL;
6 foreach edge e of P do
7 p← closest point on e to v;

// p can be a vertex of P
8 s← pv;
9 if s completely lies inside P AND s ̸∈ E(P) AND

s ̸∈ Γ then
10 if s.length < dmin then
11 dmin ← s.length;
12 smin ← s;
13 end
14 end
15 end
16 Γ← Γ ∪ {smin};
17 end
18 Let u, v, w, x be arbitrary vertices;
19 if ∃uv ∈ Γ | ∇ (uv) ̸∈ {0, π/2} then Γ← Γ \ {uv} ;

/* Remove the doors that are not
horizontal or vertical to preserve
rectilinearity. */

20 if ∃(u, v, w, x) | uv, vw,wx ∈ Γ then
21 Γ← Γ \ {uv,wx};

/* If there exists a polygonal chain
of three virtual doors, then
remove two of them. */

22 end
23 foreach segment s ∈ Γ do P← P ∪ SPLIT(P,s);

/* Iteratively, decompose the polygon
into subploygons by cutting it
through s. */

24 return P
Algorithm 1: Decomposition algorithm

Algorithm 1 takes a simple polygon as input, and return a set
of subpolygons derived from partitioning the input polygon.
In Lines 1 and 2, we initialize the set of subpolygons and the
set of virtual doors as empty sets, respectively. From Line 3
to Line 17, we iterate on each reflex vertex v in the polygon
and find the minimum line segment from that vertex to a
point inside the polygon. In Lines 4 and 5, we initialize an
integer as inifinity, and a line segment as null for storing the
virtual door. From Line 6 to Line 15, we iterate on the edges
of the polygon to determine which one is the closest to the
current reflex vertex. For each edge, we find the closest point
p in Line 7, and we draw the segment pv, and store it in s. In
Line 9, we check if the computed segment s lies completely
inside the polygon, is not an edge, and is not already a virtual
door. If s passes all tests, then finally we check if the length
is minimum, and store the minimum distance and minimum
length segment in variables dmin and smin , respectively in
Lines 11 and 12. After we find the minimum segment for
a reflex vertex, we add that segment into the set of virtual
doors in Line 16.
When the algorithm reaches 17, we have a set of virtual doors
which are drawn from every reflex vertex to the boundary
of the polygon. There might be two problems with this set
of virtual doors. The first problem is when the slope of a
virtual door is not 0, π/2, 3π/2, or 2π. Since we work
with rectilinear polygons, we remove such doors in Line 19
to preserve rectilinearity. The second problem is that there
might be a polygonal chain of three virtual doors, rendering
two of them redundant. In this case, we remove the first and
the last edge of this chain in Line 21. After we finish our
post-processing on the doors, we iterate on each virtual door,
and split the polygon to create subpolygons in line 23.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

Fig. 2: A polygon decomposed by Algorithm 1. The virtual
doors are denoted by bold, red line segments. The dotted line
segments indicate that they were eliminated by the algorithm
(Lines 20 – 22). The blue segments were eliminated because
they form a polygonal chain of length 3, and the green
segments were eliminated because they are not orthogonal.

Proposition 1: Given a (not necessarily rectilinear) simple
polygon P and three non-collinear points a, b, c ∈ ∂(P), if
there exist two virtual doors ab and bc that are generated by
Algorithm 1, then the triangle △abc lies completely inside
P .

Proof: Since the algorithm picks virtual doors from the
segments that lie inside P completely, then only ac has the

potential to intersect ∂(P). Let i be an intersection point
between ∂(P) and ac. Without loss of generality, let i be
the first intersection point while traveling from a to c. Then,
ai is shorter than ac since the intersection point i lies on ac,
somewhere in-between. Therefore, the algorithm would pick
ai as a virtual door rather than ac.

Proposition 2: The bottleneck segments computed by Algo-
rithm 1 do not intersect, even for a non-rectilinear polygon.

Proof: Denote two intersecting virtual doors by ab and
cd. Without loss of generality, let (a, c, b, d) be the clockwise
order of the endpoints of the virtual doors, let a and d lie on
x-axis of the coordinate system, and let a be at (0, 0). We
proceed by analyzing the cases of this scenario.
Case 1 ad and bc are edges: If |ab| < |ac|, then by triangle
inequality, |bd| < |ac| must hold. Therefore, the algorithm
picks bd instead of cd as a virtual door. Analogously, if
|cd| < |bd| holds, then ac is picked as a virtual door.
Case 2 ad is an edge, c is a vertex, and b is a point on an
edge: If |cd| < |bd|, then by triangle inequality, |ac| < |ab|
holds (remember the clockwise order). Thus, the algorithm
picks ac instead of ab. If, on the other hand, |ab| < |ac|
holds, then |bd| < |cd| holds.
Case 3 Neither ad nor bc is an edge: This case is equivalent
to Case 2. In addition, there is possibility of picking bc and
ad as virtual doors.

We could equip the polygonal environment with a central
system which controls whether a robot goes through or
bounces back from a virtual door. Although there are many
ways to operate such a system, our virtual sensor could be
implemented by a single RFID system. Our proposed system
is as follows: Every robot is equipped with an RFID receiver,
and every virtual doors is equipped with a device that is
capable of sending RFID signals with multiple frequencies.
The RFID receivers have a very low threshold such that they
activate once the robot is very close to a virtual door. If
the robot receives an RFID signal from a bandwidth which
it listens to, then it bounces back. Otherwise, the robot
continues to move as if there are no obstacles.
Since we do not want a robot to return a subpolygon from
which it got out, we close the door after it leaves. Thus, the
robot will avoid redundant bounces and carry on.
When there is a single robot bouncing around, the system
is fairly simple. The virtual doors become active if the door
is closed, and passive otherwise. However, once there are
multiple robots, this approach does not work since we do
not want to close the door for every other robot once one of
them passes through.

VI. BOUNCING STRATEGY
We describe the simplest form of bouncing strategy for the
robot, which uses one bit of memory, and then show that
how we can extend the strategy if additional resources are
available.
Our goal is to make the robot traverse every sub-polygon
obtained by Algorithm 1. The strategy is deterministic, uses
only the information on the length of the narrowest virtual

door ℓ, the distance between the door and the opposite wall
h, and guarantees the robot to traverse every sub-polygon.
Whenever the robot hits a wall, it is able to flip a bit in its
memory.
Let k be the bit which the robot flips every time it hits a wall.
We call this rule as “smart bouncing” as it lets the robot go
slow and steady for very narrow doors. The rule is

(1− k) · (π/2− α) + k · (π/2− α+ θ) , (1)

where α is the hitting angle, and θ = arcsin

(
ℓ√

ℓ2 + h2

)
,

ℓ is the length of the door, and h is the distance between the
door and the opposite wall. If this information is not updated,
then the robot is given the minimum value of θ for every ℓ
and h, in the beginning.
For the sake of simplicity, let us pose the problem as follows.

Definition 2 (Room escape problem): Given a rectangular
room with a door, and a bouncing robot inside this room,
how can we guarantee that the robot will reach to the
door regardless of its starting position and initial movement
vector?

If the robot uses symmetrical bouncing rule (i.e., the angle
of incidence is equal to the angle of bounce), then the robot
can be trapped in the room, bouncing off of the same walls
at the same points. In Figure 3a, we see such a case. The
robot can never reach to the door since it makes the same
six bounces until its battery is drained.

(a) (b)

Fig. 3: (a) An example of a robot getting stuck in a rectangle
with the symmetrical bouncing strategy βi = αi. (b) An
example of a robot having a very hard time to get out of a
rectangle with the random bouncing strategy.

Remark 3: The random bouncing robot will eventually es-
cape from any polygonal room as long as there is a door.
However, when the number of bounces is taken into account,
it is not optimal to use the random bouncing rule if the door
is too narrow.

We propose the bouncing rule given in Equation (1), which
guarantees that the robot to reach the door. The idea behind
that strategy is as follows. The robot goes back and forth
between two parallel horizontal (respectively, vertical) walls.
While doing so, it covers the distance horizontally (respec-
tively, vertically) on the walls. The distance that the robot
covers is slightly smaller than the length of the door. This
behavior continues when the robot changes from horizontal
(respectively, vertical) to vertical (respectively, horizontal)
walls. Because the distance covered each time is less than
the length of the door, the robot will reach the door after

ℓ

h

ℓ−ε

(a) (b)

Fig. 4: (a) Smart bouncing for a robot R. ℓ denotes the length
of the virtual door, h denotes the distance between the door
and the opposite wall. (b) An example of a robot reaching
to a narrow door with the smart bouncing strategy.

finite number of bounces. This strategy can also be used
for a robot to patrol all the subpolygons (decomposed by
Algorithm 1) in a rectilinear polygon.

Definition 4 (Polygon patrolling problem): Given a decom-
posed rectilinear polygon, and a bouncing robot inside this
polygon, how can we guarantee that the robot will enter every
room regardless of its starting position and initial movement
vector?

Proposition 3: Given a rectilinear polygon that is decom-
posed into subpolygons by Algorithm 1, a robot that follows
the smart bouncing rule is guaranteed to traverse all the
subpolygons.

If we set the angle of rotation according to the smallest value

of
ℓ√

ℓ2 + h2
for all ℓ and h, then the robot is guaranteed

to leave any room it is in, because the distance it covers on
a wall will always be smaller than the length of the door.
Leaving a certain room means entering another one, since
the subpolygons produced by the decomposition algorithm
pairwise share exactly one edge (which is the virtual door).
Following this pattern, the robot will leave every room it is
in, and go into adjacent room. Once the robot leaves a room
i, and enters the room j, the virtual door between i and j
is closed behind the robot, if j has another adjacent room
except i. In case the only room that is adjacent to j is i,
then this means that j is a dead-end, and there are no other
rooms to go except i. In that case, the virtual door between
i and j is left open until the robot goes back to i.

VII. REACHABILITY GRAPH
Using the subpolygons P = {P1, . . . , Pk} obtained by
Algorithm 1, we describe two metrics, called the escapability
factor and the reachability factor. These metrics determine
the “likelihood” of a robot to be able to escape the sub-
polygon it is currently in, and reach a certain subpolygon
from its current position, respectively.
The escapability factor of a robot from a subpolygon Pi is
computed by the formula Φ(i) = |ℓij |/|w(ℓij)|, where |ℓij |
is the length of the jth virtual door in subpolygon Pi, and
|w(ℓij)| is the length of the wall that ℓij is on. One can deduce
that if |ℓij | = |w(ℓij)|, then the robot will surely escape the
subpolygon, as one of our assumptions is that the hitting
angle is never π.

Remark 5: Since one end of every virtual door is on a reflex
vertex, and the polygon is a simple polygon without holes,

there is a unique order of subpolygons that a robot must pass
through between any non-adjacent subpolygons.

These two metrics, namely the escapability factor and the
reachability factor, have a relationship. The reachability fac-
tor is computed in a similar fashion of computing probability.
We compute the reachability factor multiplying the values of
the escapability factor of each subpolygon, regardless of the
bouncing rules. Suppose that the robot is in P1 and the goal
is to reach Pk. Without loss of generality, suppose that P1

and Pk do not share any virtual doors, and let (P2, . . . , Pk1)
be series of subpolygons for the robot to pass to reach Pk.
Then, the reachability factor of the robot from P1 to Pk is
Ψ(1, k) = Πk−1

i Φ(i).
To demonstrate this computation better, let us give an
example. Let there be three big rectangular subpolygons
side by side with gaps in-between, closest ones connected
with a very narrow rectangular subpolygon. For the sake of
simplicity, let us refer to the big subpolygons as chambers,
and the narrow ones as doorways.

1 2 3

(a)

1 x 2 y 3
0.033

1

1

0.033

0.1

1

1

0.1

(b)

Fig. 5: (a) Three rooms connected by two narrow doorways.
(b) The reachability graph of the polygon given in.

In Figure 5a, there are three rooms whose dimensions
are identical, numbered 1, 2, 3, and two narrow doorways
connecting them. When Algorithm 1 runs on this polygon,
the virtual doors are two short openings at the ends of each
doorway. Without loss of generality, let the doorways be
a, b, c, d beginning from the leftmost door. For example, let
the long edges of the polygons be 30 units, let the widths of
a and b be 1 unit, and let the widths of c and d be 3 units.
That is, Φ(1) = 0.03, and Φ(2) = 0.1. Since the doorways
have virtual doors at both ends, and the virtual doors cover
the whole wall, the escape factor of the doorways is 1. Now,
let us analyze the example given. Suppose that the a robot
starts moving in chamber 1. Then, the reachability factor of
this robot to chamber 3 is Ψ(1, 3) = 0.033·1·0.1·1 = 0.003.
The reachability graph is an edge weighted and directed
graph built where each subpolygon, regardless of being a
doorway or a chamber, is a vertex in the graph, and there
exists an edge between two subpolygons that share a virtual
door. The graph for the polygon given in Figure 5a, see
Figure 5b. The chambers are labeled by 1, 2, 3, and the
doorways are labeled by x and y.
When we obtain the reachability graph, we can decide on
the bouncing strategy of the robot. If the subpolygon that
we want the robot to reach has low reachability factor, then
having a random bouncing rule or the billiard bouncing rule

might not be the best choice. Thus, we let our robot have
the smart bouncing strategy given in Equation 1. On the
other hand, if the reachability factor is high, then the smart
bouncing might lead to some redundant bounces, wasting the
limited power. In that case, the robot follows either billiard
or random bounce. The best result in terms of time spent to
reach a subpolygon would be to change the bouncing rule
for each escapability factor of each subpolygon. This can be
achieved via the central system feeding the robot with proper
bouncing rule. However, the robot then needs more than one
bit of memory.
In short, we cannot claim a particular bouncing rule to be the
optimal. As each bouncing rule has trade-offs with the others,
the optimum choice of the bouncing rule can be determined
after analyzing the structural properties of the polygon.

VIII. COMPUTED EXAMPLES
We conduct simulations with three different robot types. (i)
The reflecting robot, which behaves like a billiard ball, i.e.,
angle of incidence is equal to the angle of reflection. (ii)
The random robot, which can bounce off of an edge in any
direction, and the angle of incidence does not play a role.
(iii) The smart robot, which uses the bounce rule given in
(1).
In our simulations, we select a starting room that the robots
start in, and a target room that the robots are to reach.
We compare three types of robots based on the number of
bounces they make until they reach to the target room. We
pick far away rooms as starting room and the target room.
We run the simulations in the polygon given in Figure 2.
In Figure 6, we see the polygon partitioned by Algorithm 1,
rooms colored differently and numbered from 0 to 8. The
robot uses the smart bouncing rule. On the left hand side,
it starts from Room 5 and goes to Room 8. On the right
hand side, it starts from Room 2 and goes to Room 6. The
green line segments represent the open doors. The sequence
of subpolygons that the robot will follow is 5, 4, 7, 1, 0, 8.
When starting from the same position with the same direction
of motion, the reflecting bounce rule and the smart bounce
rule output a deterministic series of bounces. Thus, we
conduct the simulations that concern these rules only once.
Above simulations show that the smart bouncing rule, al-
though guarantees to reach to the target room, might lead the
robot to make extra bounces compared to reflecting bouncing
rule. Since the random bouncing is not deterministic, above
examples do not accurately represent a comparison between
two bouncing rules. Therefore, we conduct 500 simulations
and report the average results. We set a limit of 100 bounces,
and after 500 bounces, we assume that the robot’s battery is
dead. The robot starts from a random point in the starting
room, with random movement vector. In the first set of simu-

5-8 2-6
Rf 16 25
Sm 26 40
Rn 27.4 32.7

TABLE I: The number of bounces for different types of
bouncing rules.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 6: (a) Smart bouncing rule. From Room 5 to Room 8.
26 bounces. (b) Smart bouncing rule. From Room 2 to Room
6. 40 bounces (c)-(e) Random bouncing rule. From room 5
to Room 8. 21, 25 and 46 bounces are done, respectively.
(f)-(g) Reflective bouncing rule. From Room 2 to Room 6.
25 and 46 bounces are done, respectively.

lations, the robot starts from Room 5. The target is Room 8.
The random bouncing robot reached to its destination in all
100 tests under 500 bounces. The average number of bounces
is 27.4. This result indicates that the difference between the
random bouncing rule and the smart bouncing rule is not
very significant, and smart bouncing rule is preferable in
case where the doors are too narrow. Moreover, due to the
stochastic nature of random bouncing rule, the robot might
make redundant bounces.
For the next set of simulations, the robot starts from Room
2, and the target is Room 6. With the smart bouncing rule,
the robot reaches its target after 40 bounces, whereas the
reflecting bounce reaches to the target after 26 bounces. On
the average, the robot with the random bouncing rule makes
32.7 bounces.
A summary of the performances is given in Table I. Rf,
Sm and Rn are the reflective, smart and random bouncing
rules, respectively. The column labeled 5-8 indicate the
simulations run when the robots start from 5 and the target is
8. Analogously, 2-6 indicate that the robot starts from Room
2 and the target is Room 6.

IX. CONCLUSION AND FUTURE WORK
In this paper we have studied the robot with limited sensors
which can bounce of the surfaces once it hit them in
the presence of (virtual) doors which can be manipulated.
We have described an algorithm to identify the doors, and
partition the polygon using these doors.
Utilizing these doors are crucial while navigating a robot
which has no sensors. However, the doors alone will not
suffice in some cases, such as the door between two rooms
is too narrow (i.e., the escapability factor is less than 0.1).
We introduced a bouncing rule, called smart bouncing, which
uses only one bit of memory. With this rule, the robot is

guaranteed to leave a rectangular room regardless of the size
of the door. Thus, when the doors close automatically, a robot
with the smart bouncing rule definitely reaches its target after
finite number of bounces. With the same reasoning, the robot
can patrol every room in a rectinlinear polygon with opening
and closing the doors in the correct order.
The smart bouncing rule, compared with the other two type
of bouncing rules, does not have a clear advantage in terms of
number of bounces when the escapability factors are greater
than 0.1 unit. What separates the smart bouncing rule from
the others is that the guarantee for the robot to leave a room,
even when the escapability factor is much smaller than 0.1
unit. We believe that our proposed bouncing rule paves the
way for different application areas, and can also be utilized in
different types of polygons (e.g., polygons with holes, non-
rectilinear polygons) by some trivial modifications. Although
the number of the bounces are equal, unlike others, the smart
bouncing rule guarantees the escape.
For an extension of this work, we plan to work on the
central system that controls the virtual doors for multiple
robots bouncing around in the same polygon. Our future
work includes simulating three types of bouncing rules in
polygons with different characteristics, such as abundantly
many rooms, very narrow doors, labyrinth-like shape.

REFERENCES

[1] Y. G. Sanai, “Dynamical Systems with Elastic Reflections,” Russian
Mathematical Surveys, vol. 25, no. 2, pp. 137–189, 1970.

[2] C. Boldrighini, M. Keane, and F. Marchetti, “Billiards in Polygons,”
The Annals of Probability, vol. 6, no. 4, pp. 532–540, 1978.

[3] A. Q. Nilles, Y. Ren, I. Becerra, and S. M. LaValle, “A Visibility-Based
Approach to Computing Nondeterministic Bouncing Strategies,” in
Algorithmic Foundations of Robotics XIII, 2020, pp. 89–105.

[4] G. W. Tokarsky, “Polygonal Rooms Not Illuminable from Every
Point,” The American Mathematical Monthly, vol. 102, no. 10, pp.
867–879, Dec. 1995.

[5] S. K. Ghosh, P. P. Goswami, A. Maheshwari, S. C. Nandy, S. P. Pal,
and S. Sarvattomanda, “Algorithms for computing diffuse reflection
paths in polygons,” The Visual Computer, vol. 28, no. 12, pp. 1229–
1237, 2012.

[6] B. Aronov, A. R. Davis, T. K. Dey, S. P. Pal, and D. C. Prasad,
“Visibility with One Reflection,” pp. 13–23, 1992.

[7] B. Aronov, A. R. Davis, T. K. Dey, S. P. Pal, and D. Prasad, “Visibility
with Multiple Reflections,” in Discrete and Computational Geometry,
vol. 20, 1998, pp. 61–78.

[8] E. Fox-Epstein, C. D. Tóth, and A. Winslow, “Diffuse Reflection
Radius in a Simple Polygon,” vol. 76, pp. 910–931, 2016.

[9] S. Foldes, I. Rival, and J. Urrutia, “Light sources, obstructions and
spherical orders,” Discrete Mathematics, vol. 102, no. 1, pp. 13–23,
1992.

[10] A. Q. Nilles, “Designing boundary interactions for simple mo-
bile robots,” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, 2020.

[11] A. Q. Nilles, A. Pervan, T. A. Berrueta, T. D. Murphey, and S. M.
LaValle, “Information Requirements of Collision-Based Micromanip-
ulation,” in Algorithmic Foundations of Robotics XIV. Springer
International Publishing, 2021, pp. 210–226.

[12] T. Alam and L. Bobadilla, “Multi-Robot Coverage and Persistent
Monitoring in Sensing-Constrained Environments,” Robotics, vol. 9,
no. 2, 2020.

	INTRODUCTION
	RELATED WORK
	MOTIVATION
	TERMINOLOGY
	DECOMPOSITION
	BOUNCING STRATEGY
	REACHABILITY GRAPH
	COMPUTED EXAMPLES
	CONCLUSION AND FUTURE WORK
	References

